Steady-state non-line-of-sight imaging

Wenzheng Chen, Simon Daneau, Colin Brosseau, Felix Heide

Research output: Chapter in Book/Report/Conference proceedingConference contribution

59 Scopus citations

Abstract

Conventional intensity cameras recover objects in the direct line-of-sight of the camera, whereas occluded scene parts are considered lost in this process. Non-line-of-sight imaging (NLOS) aims at recovering these occluded objects by analyzing their indirect reflections on visible scene surfaces. Existing NLOS methods temporally probe the indirect light transport to unmix light paths based on their travel time, which mandates specialized instrumentation that suffers from low photon efficiency, high cost, and mechanical scanning. We depart from temporal probing and demonstrate steady-state NLOS imaging using conventional intensity sensors and continuous illumination. Instead of assuming perfectly isotropic scattering, the proposed method exploits directionality in the hidden surface reflectance, resulting in (small) spatial variation of their indirect reflections for varying illumination. To tackle the shape-dependence of these variations, we propose a trainable architecture which learns to map diffuse indirect reflections to scene reflectance using only synthetic training data. Relying on consumer color image sensors, with high fill factor, high quantum efficiency and low read-out noise, we demonstrate high-fidelity color NLOS imaging for scene configurations tackled before with picosecond time resolution.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages6783-6792
Number of pages10
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: Jun 16 2019Jun 20 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period6/16/196/20/19

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • Computational Photography
  • Low-level Vision
  • Physics-based Vision and Shape-from-X

Fingerprint

Dive into the research topics of 'Steady-state non-line-of-sight imaging'. Together they form a unique fingerprint.

Cite this