Statistical significance of variables driving systematic variation in high-dimensional data

Neo Christopher Chung, John D. Storey

Research output: Contribution to journalArticlepeer-review

133 Scopus citations


Motivation: There are a number of well-established methods such as principal component analysis (PCA) for automatically capturing systematic variation due to latent variables in large-scale genomic data. PCA and related methods may directly provide a quantitative characterization of a complex biological variable that is otherwise difficult to precisely define or model. An unsolved problem in this context is how to systematically identify the genomic variables that are drivers of systematic variation captured by PCA. Principal components (PCs) (and other estimates of systematic variation) are directly constructed from the genomic variables themselves, making measures of statistical significance artificially inflated when using conventional methods due to over-fitting. Results: We introduce a new approach called the jackstraw that allows one to accurately identify genomic variables that are statistically significantly associated with any subset or linear combination of PCs. The proposed method can greatly simplify complex significance testing problems encountered in genomics and can be used to identify the genomic variables significantly associated with latent variables. Using simulation, we demonstrate that our method attains accurate measures of statistical significance over a range of relevant scenarios. We consider yeast cell-cycle gene expression data, and show that the proposed method can be used to straightforwardly identify genes that are cell-cycle regulated with an accurate measure of statistical significance. We also analyze gene expression data from post-trauma patients, allowing the gene expression data to provide a molecularly driven phenotype. Using our method, we find a greater enrichment for inflammatory-related gene sets compared to the original analysis that uses a clinically defined, although likely imprecise, phenotype. The proposed method provides a useful bridge between large-scale quantifications of systematic variation and gene-level significance analyses.

Original languageEnglish (US)
Pages (from-to)545-554
Number of pages10
Issue number4
StatePublished - Feb 15 2015

All Science Journal Classification (ASJC) codes

  • Computational Mathematics
  • Molecular Biology
  • Biochemistry
  • Statistics and Probability
  • Computer Science Applications
  • Computational Theory and Mathematics


Dive into the research topics of 'Statistical significance of variables driving systematic variation in high-dimensional data'. Together they form a unique fingerprint.

Cite this