TY - GEN
T1 - Statistical QoS Provisioning over Cell-Free M-MIMO-NOMA Based 5G+ Mobile Wireless Networks in the Non-Asymptotic Regime
AU - Zhang, Xi
AU - Wang, Jingqing
AU - Poor, H. Vincent
N1 - Funding Information:
This work of Xi Zhang and Jingqing Wang was supported in part by the U.S. National Science Foundation under Grants ECCS-1408601 and CNS-1205726, and the U.S. Air Force under Grant FA9453-15-C-0423. This work of H. Vincent Poor was supported in part by the U.S. National Science Foundation under Grants CCF-0939370 and CCF-1908308.
Publisher Copyright:
© 2020 IEEE.
PY - 2020/5
Y1 - 2020/5
N2 - To upper-bound both delay and error-rate for sup-porting time-sensitive multimedia services over 5G and beyond (5G+) mobile wireless networks, researchers have developed several advanced techniques, including statistical delay-bounded quality-of-service (QoS) provisioning and finite blocklength coding (FBC). On the other hand, cell-free massive-multi-input multi-output (m-MIMO) system, where a large number of distributed access points (APs) jointly serve all users in a coordinated manner, has emerged as one of the key promising techniques to significantly improve various mobile QoS performance indices, including throughput, user-coverage probability, energy/spectrum efficiencies, etc. Inspired by the more diverse distances between mobile users and APs in cell-free m-MIMO systems compared with traditional centralized m-MIMO systems, integrating non-orthogonal multiple access (NOMA) with cell-free m-MIMO can significantly enhance spectral efficiency for massive connections of mobile devices. But, due to the complexity of analyzing the networking dynamics in the finite blocklength regime, how to efficiently characterize the queuing process for cell-free m-MIMO-NOMA schemes using FBC based statistical delay/error-rate bounded QoS theory is still an open problem. To solve the above challenges, we propose FBC based cell-free m-MIMO-NOMA schemes over 5G+ mobile wireless networks under statistical delay/error-rate bounded QoS constraints. In particular, we establish cell-free m-MIMO-NOMA system models over Rician wireless fading channels. Considering statistical delay/error-rate bounded QoS constraints, we derive a closed-form expression for an upper bound on the delay violation probability over downlink Rician wireless fading channels with non-vanishing error probability. Our simulation results validate and evaluate our proposed FBC based cell-free m-MIMO-NOMA schemes.
AB - To upper-bound both delay and error-rate for sup-porting time-sensitive multimedia services over 5G and beyond (5G+) mobile wireless networks, researchers have developed several advanced techniques, including statistical delay-bounded quality-of-service (QoS) provisioning and finite blocklength coding (FBC). On the other hand, cell-free massive-multi-input multi-output (m-MIMO) system, where a large number of distributed access points (APs) jointly serve all users in a coordinated manner, has emerged as one of the key promising techniques to significantly improve various mobile QoS performance indices, including throughput, user-coverage probability, energy/spectrum efficiencies, etc. Inspired by the more diverse distances between mobile users and APs in cell-free m-MIMO systems compared with traditional centralized m-MIMO systems, integrating non-orthogonal multiple access (NOMA) with cell-free m-MIMO can significantly enhance spectral efficiency for massive connections of mobile devices. But, due to the complexity of analyzing the networking dynamics in the finite blocklength regime, how to efficiently characterize the queuing process for cell-free m-MIMO-NOMA schemes using FBC based statistical delay/error-rate bounded QoS theory is still an open problem. To solve the above challenges, we propose FBC based cell-free m-MIMO-NOMA schemes over 5G+ mobile wireless networks under statistical delay/error-rate bounded QoS constraints. In particular, we establish cell-free m-MIMO-NOMA system models over Rician wireless fading channels. Considering statistical delay/error-rate bounded QoS constraints, we derive a closed-form expression for an upper bound on the delay violation probability over downlink Rician wireless fading channels with non-vanishing error probability. Our simulation results validate and evaluate our proposed FBC based cell-free m-MIMO-NOMA schemes.
KW - 5G+
KW - FBC
KW - Rician fading channels
KW - Statistical delay-bounded QoS provisioning
KW - cell-free m-MIMO-NOMA
UR - http://www.scopus.com/inward/record.url?scp=85090380115&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090380115&partnerID=8YFLogxK
U2 - 10.1109/SPAWC48557.2020.9154222
DO - 10.1109/SPAWC48557.2020.9154222
M3 - Conference contribution
AN - SCOPUS:85090380115
T3 - IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
BT - 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 21st IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2020
Y2 - 26 May 2020 through 29 May 2020
ER -