TY - GEN
T1 - Statistical Delay and Error-Rate Bounded QoS Control for URLLC in the Non-Asymptotic Regime
AU - Zhang, Xi
AU - Wang, Jingqing
AU - Poor, H. Vincent
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - To support increasing demands for real-time multimedia wireless data traffic, there have been considerable efforts toward guaranteeing stringent quality-of-service (QoS) when designing mobile wireless network architectures for ultra-reliable and low-latency communications (URLLC). One of the major design issues raised by URLLC is how to characterize QoS metrics for upper-bounding both delay and error-rate when implementing short-packet data communications, such as finite blocklength coding (FBC), over highly time-varying wireless fading channels. To efficiently accommodate statistical QoS provisioning for URLLC traffic, it is crucial to model and investigate wireless fading channels' stochastic-characteristics by defining and identifying new statistical QoS metrics and their analytical relationships, such as delay-bound-violating probability, effective capacity, decoding error probability, outage capacity, etc., in the non-asymptotic regime. However, how to rigorously and efficiently characterize the stochastic dynamics of mobile wireless networks in terms of statistically upper-bounding FBC-based both delay and error-rate QoS metrics has been neither well understood nor thoroughly studied before. To overcome these challenges, in this paper we develop analytical modeling frameworks and controlling mechanisms for statistical delay and error-rate bounded QoS provisioning in the non-asymptotic regime. First, we establish FBC-based system models by characterizing various information-theoretic specifications. Second, we characterize the outage-probability and outage capacity functions in the non-asymptotic regime. Third, we develop a set of new statistical delay and error-rate bounded QoS metrics and control mechanisms including delay-bound-violation probability, QoS-exponent functions, and the -effective capacity in the non-asymptotic regime. Finally, the obtained simulation results validate and evaluate our proposed controlling mechanisms for statistical QoS in supporting URLLC.
AB - To support increasing demands for real-time multimedia wireless data traffic, there have been considerable efforts toward guaranteeing stringent quality-of-service (QoS) when designing mobile wireless network architectures for ultra-reliable and low-latency communications (URLLC). One of the major design issues raised by URLLC is how to characterize QoS metrics for upper-bounding both delay and error-rate when implementing short-packet data communications, such as finite blocklength coding (FBC), over highly time-varying wireless fading channels. To efficiently accommodate statistical QoS provisioning for URLLC traffic, it is crucial to model and investigate wireless fading channels' stochastic-characteristics by defining and identifying new statistical QoS metrics and their analytical relationships, such as delay-bound-violating probability, effective capacity, decoding error probability, outage capacity, etc., in the non-asymptotic regime. However, how to rigorously and efficiently characterize the stochastic dynamics of mobile wireless networks in terms of statistically upper-bounding FBC-based both delay and error-rate QoS metrics has been neither well understood nor thoroughly studied before. To overcome these challenges, in this paper we develop analytical modeling frameworks and controlling mechanisms for statistical delay and error-rate bounded QoS provisioning in the non-asymptotic regime. First, we establish FBC-based system models by characterizing various information-theoretic specifications. Second, we characterize the outage-probability and outage capacity functions in the non-asymptotic regime. Third, we develop a set of new statistical delay and error-rate bounded QoS metrics and control mechanisms including delay-bound-violation probability, QoS-exponent functions, and the -effective capacity in the non-asymptotic regime. Finally, the obtained simulation results validate and evaluate our proposed controlling mechanisms for statistical QoS in supporting URLLC.
KW - FBC
KW - Statistical delay and error-rate bounded QoS
KW - URLLC
KW - outage probability/capacity
KW - ϵ-effective capacity
UR - http://www.scopus.com/inward/record.url?scp=85136275293&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85136275293&partnerID=8YFLogxK
U2 - 10.1109/ISIT50566.2022.9834874
DO - 10.1109/ISIT50566.2022.9834874
M3 - Conference contribution
AN - SCOPUS:85136275293
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2112
EP - 2117
BT - 2022 IEEE International Symposium on Information Theory, ISIT 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 IEEE International Symposium on Information Theory, ISIT 2022
Y2 - 26 June 2022 through 1 July 2022
ER -