Statistical compressive sensing of Gaussian mixture models

Guoshen Yu, Guillermo Sapiro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

A new framework of compressive sensing (CS), namely statistical compressive sensing (SCS), that aims at efficiently sampling a collection of signals that follow a statistical distribution and achieving accurate reconstruction on average, is introduced. For signals following a Gaussian distribution, with Gaussian or Bernoulli sensing matrices of O(k) measurements, considerably smaller than the O(k log(N/k)) required by conventional CS, where N is the signal dimension, and with an optimal decoder implemented with linear filtering, significantly faster than the pursuit decoders applied in conventional CS, the error of SCS is shown tightly upper bounded by a constant times the best k-term approximation error, with overwhelming probability. The failure probability is also significantly smaller than that of conventional CS. Stronger yet simpler results further show that for any sensing matrix, the error of Gaussian SCS is upper bounded by a constant times the best k-term approximation with probability one, and the bound constant can be efficiently calculated. For signals following Gaussian mixture models, SCS with a piecewise linear decoder is introduced and shown to produce for real images better results than conventional CS based on sparse models.

Original languageEnglish (US)
Title of host publication2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Proceedings
Pages3728-3731
Number of pages4
DOIs
StatePublished - 2011
Externally publishedYes
Event36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011 - Prague, Czech Republic
Duration: May 22 2011May 27 2011

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Other

Other36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011
Country/TerritoryCzech Republic
CityPrague
Period5/22/115/27/11

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Keywords

  • Compressive sensing
  • Gaussian mixture models

Fingerprint

Dive into the research topics of 'Statistical compressive sensing of Gaussian mixture models'. Together they form a unique fingerprint.

Cite this