Standard model contributions to the neutrino index of refraction in the early Universe

Paul Langacker, Jiang Liu

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

With the standard electroweak interactions, the lowest-order coherent forward-scattering amplitudes of neutrinos in a CP-symmetric medium (such as the early Universe) are zero, and the index of refraction of a propagating neutrino can only arise from the expansion of gauge-boson propagators, from radiative corrections, and from new physics interactions. Motivated by nucleosynthesis constraints on a possible sterile neutrino (suggested by the solar-neutrino deficit and a possible 17-keV neutrino), we calculate the standard model contributions to the neutrino index of refraction in the early Universe, focusing on the period when the temperature was of the order of a few MeV. We find sizable radiative corrections to the tree-level result obtained by the expansion of the gauge-boson propagator. For e+e(e)e+e(e) the leading-log correction is about +10%, while for e+e(e)e+e(e) the correction is about +20%. Depending on the family mixing (if any), effects from different family scattering can be dominated by radiative corrections. The result for ++ is zero at the one-loop level, even if neutrinos are massive. The cancellation of infrared divergence in a coherent process is also discussed.

Original languageEnglish (US)
Pages (from-to)4140-4160
Number of pages21
JournalPhysical Review D
Volume46
Issue number10
DOIs
StatePublished - Jan 1 1992

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Standard model contributions to the neutrino index of refraction in the early Universe'. Together they form a unique fingerprint.

Cite this