Stable camera motion estimation using convex programming

Onur Özyeşil, Amit Singer, Ronen Basri

Research output: Contribution to journalArticle

25 Scopus citations

Abstract

We study the inverse problem of estimating n locations t1, t2, . . . , tn (up to global scale, translation, and negation) in Rd from noisy measurements of a subset of the (unsigned) pairwise lines that connect them, that is, from noisy measurements of ± ti−tj/ti −tj 2 for some pairs (i, j) (where the signs are unknown). This problem is at the core of the structure from motion (SfM) problem in computer vision, where the ti represent camera locations in R3. The noiseless version of the problem, with exact line measurements, has been considered previously under the general title of parallel rigidity theory, mainly in order to characterize the conditions for unique realization of locations. For noisy pairwise line measurements, current methods tend to produce spurious solutions that are clustered around a few locations. This sensitivity of the location estimates is a well-known problem in SfM, especially for large, irregular collections of images. In this paper we introduce a semidefinite programming (SDP) formulation, specially tailored to overcome the clustering phenomenon. We further identify the implications of parallel rigidity theory for the location estimation problem to be well-posed, and prove exact (in the noiseless case) and stable location recovery results. We also formulate an alternating direction method to solve the resulting semidefinite program, and provide a distributed version of our formulation for large numbers of locations. Specifically for the camera location estimation problem, we formulate a pairwise line estimation method based on robust camera orientation and subspace estimation. Finally, we demonstrate the utility of our algorithm through experiments on real images.

Original languageEnglish (US)
Article numberA016
Pages (from-to)1220-1262
Number of pages43
JournalSIAM Journal on Imaging Sciences
Volume8
Issue number2
DOIs
StatePublished - May 27 2015

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

Keywords

  • Alternating direction method of multipliers
  • Convex relaxation
  • Parallel rigidity
  • Semidefinite programming
  • Structure from motion

Fingerprint Dive into the research topics of 'Stable camera motion estimation using convex programming'. Together they form a unique fingerprint.

Cite this