TY - JOUR
T1 - Stable and clumped isotope characterization of authigenic carbonates in methane cold seep environments
AU - Thiagarajan, Nivedita
AU - Crémière, Antoine
AU - Blättler, Clara
AU - Lepland, Aivo
AU - Kirsimäe, Kalle
AU - Higgins, John
AU - Brunstad, Harald
AU - Eiler, John
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/6/15
Y1 - 2020/6/15
N2 - Cold seep environments are characterized by methane-rich fluid migration and discharge at the seafloor. These environments are also intimately linked to microbial communities, which oxidize methane anaerobically, increase alkalinity and promote authigenic carbonate precipitation. We have analyzed a suite of methane-derived authigenic carbonate (MDAC) crusts from the North and Barents Sea using stable and clumped isotopes (δ13C, δ18O, δ44Ca, and Δ47) to characterize the sources of fluids as well as the environment of carbonate authigenesis. We additionally assess the potential of MDACs as a Δ47-based paleotemperature archive. The MDACs occur as three main textural-mineralogic types: micritic Mg-calcite cements, micritic aragonite cements and cavity filling aragonite cements. We find that micritic Mg-calcite cements have low δ13CVPDB values (−30 to −47‰), high δ44CaSW values (−0.4 to −0.8‰), and Δ47-temperatures (0–6 °C) consistent with shallow sub-seafloor precipitation in isotopic equilibrium. Micritic aragonite cements and cavity filling aragonite cements both have a wider range in δ13CVPDB values (−18 to −58‰), lower δ44CaSW values (−0.8 to −1.6‰) and a larger range in Δ47-based apparent temperatures (–2 – 25 °C) with samples displaying equilibrium and disequilibrium clumped isotope values. The range in apparent temperatures as well as δ44CaSW values seen in the aragonite MDACs suggest two kinetic processes: a kinetic isotope effect (KIE) due to the incomplete equilibration of carbon and oxygen isotopes among DIC species from the different sources of DIC (i.e., seawater, methane-sourced DIC and DIC residual to CO2 degassing or diffusion) and a KIE due to a fast, irreversible precipitation affecting the cations, particularly Ca, bound to carbonate mineral. Our results improve the understanding of kinetic effects on clumped isotope temperatures in MDACs and demonstrate how the multi-isotopic approach combined with textural-mineralogic criteria can be used to identify MDACs for accurate paleotemperature reconstructions.
AB - Cold seep environments are characterized by methane-rich fluid migration and discharge at the seafloor. These environments are also intimately linked to microbial communities, which oxidize methane anaerobically, increase alkalinity and promote authigenic carbonate precipitation. We have analyzed a suite of methane-derived authigenic carbonate (MDAC) crusts from the North and Barents Sea using stable and clumped isotopes (δ13C, δ18O, δ44Ca, and Δ47) to characterize the sources of fluids as well as the environment of carbonate authigenesis. We additionally assess the potential of MDACs as a Δ47-based paleotemperature archive. The MDACs occur as three main textural-mineralogic types: micritic Mg-calcite cements, micritic aragonite cements and cavity filling aragonite cements. We find that micritic Mg-calcite cements have low δ13CVPDB values (−30 to −47‰), high δ44CaSW values (−0.4 to −0.8‰), and Δ47-temperatures (0–6 °C) consistent with shallow sub-seafloor precipitation in isotopic equilibrium. Micritic aragonite cements and cavity filling aragonite cements both have a wider range in δ13CVPDB values (−18 to −58‰), lower δ44CaSW values (−0.8 to −1.6‰) and a larger range in Δ47-based apparent temperatures (–2 – 25 °C) with samples displaying equilibrium and disequilibrium clumped isotope values. The range in apparent temperatures as well as δ44CaSW values seen in the aragonite MDACs suggest two kinetic processes: a kinetic isotope effect (KIE) due to the incomplete equilibration of carbon and oxygen isotopes among DIC species from the different sources of DIC (i.e., seawater, methane-sourced DIC and DIC residual to CO2 degassing or diffusion) and a KIE due to a fast, irreversible precipitation affecting the cations, particularly Ca, bound to carbonate mineral. Our results improve the understanding of kinetic effects on clumped isotope temperatures in MDACs and demonstrate how the multi-isotopic approach combined with textural-mineralogic criteria can be used to identify MDACs for accurate paleotemperature reconstructions.
KW - Carbonate formation
KW - Clumped isotopes
KW - Methane seep
UR - http://www.scopus.com/inward/record.url?scp=85083380903&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083380903&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2020.03.015
DO - 10.1016/j.gca.2020.03.015
M3 - Article
AN - SCOPUS:85083380903
SN - 0016-7037
VL - 279
SP - 204
EP - 219
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -