Stability of tearing modes in finite-beta plasmas

R. Iacono, A. Bhattacharjee, C. Ronchi, J. M. Greene, M. H. Hughes

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The linear stability of classical tearing modes in a finite-beta, cylindrical plasma is reconsidered. The different regimes of tearing mode instability are delineated by means of critical Lundquist numbers. The well-known criterion Δ′>Δc due to Glasser, Greene, and Johnson [Phys. Fluids 18, 875 (1975)] defines a critical Lundquist number above which the plasma is stable. However, the physical importance of this Lundquist number is diminished by the fact that there is another critical Lundquist number, which is typically an order of magnitude smaller, above which the mode changes qualitatively in that the growth rate scales linearly with resistivity, and eventually becomes indistinguishable from resistive diffusion. The effect of parallel viscosity, which reduces the stabilizing coupling to the sound wave, is also considered. For large parallel viscosity, it is shown that Δc tends to zero. Thus, the stability criterion Δ′>Δc for a finite-beta plasma is simply replaced by the criterion Δ′>0. These analytical results are shown to be in good agreement with numerical results.

Original languageEnglish (US)
Pages (from-to)2645-2652
Number of pages8
JournalPhysics of Plasmas
Volume1
Issue number8
DOIs
StatePublished - 1994
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Stability of tearing modes in finite-beta plasmas'. Together they form a unique fingerprint.

Cite this