Sputtering and reflection processes from amorphous lithium surfaces by low-energy impacts of H and D atoms and D2 molecules

P. S. Krstic, E. T. Ostrowski, F. J. Domínguez-Gutierrez, S. Abe, B. E. Koel

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

This work presents a computational study of the retention, reflection, and sputtering processes at amorphous and crystalline lithium surfaces by the impact of low energy (5-100 eV) hydrogen and deuterium atoms and D2 molecules for a range of incident angles of 0° (normal to the surface) to 85°. Classical molecular dynamics simulations were performed with the reactive bond-order force field (ReaxFF) potentials. Effects of the temperature of the surface slab were also considered. The extent of retention, and the energy and angular distributions of reflected and sputtered atoms were determined. Comparison of the results of these simulations with available experimental data on the sputtering rate for Li atoms is in good agreement for incident angles of 0°, and the simulation results predict significant increase in the sputtering probabilities for incident angles larger than 30°.

Original languageEnglish (US)
Article number153848
JournalJournal of Nuclear Materials
Volume568
DOIs
StatePublished - Sep 2022

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • General Materials Science
  • Nuclear Energy and Engineering

Fingerprint

Dive into the research topics of 'Sputtering and reflection processes from amorphous lithium surfaces by low-energy impacts of H and D atoms and D2 molecules'. Together they form a unique fingerprint.

Cite this