SPREADING LAYERS in ACCRETING OBJECTS: ROLE of ACOUSTIC WAVES for ANGULAR MOMENTUM TRANSPORT, MIXING, and THERMODYNAMICS

Alexander A. Philippov, Roman R. Rafikov, James McLellan Stone

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL) - a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin-Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

Original languageEnglish (US)
Article number62
JournalAstrophysical Journal
Volume817
Issue number1
DOIs
StatePublished - Jan 20 2016

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • accretion, accretion disks
  • hydrodynamics
  • instabilities
  • waves

Fingerprint Dive into the research topics of 'SPREADING LAYERS in ACCRETING OBJECTS: ROLE of ACOUSTIC WAVES for ANGULAR MOMENTUM TRANSPORT, MIXING, and THERMODYNAMICS'. Together they form a unique fingerprint.

Cite this