Spiraling pathways of global deep waters to the surface of the Southern Ocean

Veronica Tamsitt, Henri F. Drake, Adele K. Morrison, Lynne D. Talley, Carolina O. Dufour, Alison R. Gray, Stephen M. Griffies, Matthew R. Mazloff, Jorge Louis Sarmiento, Jinbo Wang, Wilbert Weijer

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ∼ 60-90 years.

Original languageEnglish (US)
Article number172
JournalNature communications
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2017

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Spiraling pathways of global deep waters to the surface of the Southern Ocean'. Together they form a unique fingerprint.

Cite this