@inproceedings{f2f85304d32340bdab5fcfbcce6e23cf,
title = "Spikerneis: Embedding spiking neurons in inner-product spaces",
abstract = "Inner-product operators, often referred to as kernels in statistical learning, define a mapping from some input space into a feature space. The focus of this paper is the construction of biologically-motivated kernels for cortical activities. The kernels we derive, termed Spikernels, map spike count sequences into an abstract vector space in which we can perform various prediction tasks. We discuss in detail the derivation of Spikernels and describe an efficient algorithm for computing their value on any two sequences of neural population spike counts. We demonstrate the merits of our modeling approach using the Spikernel and various standard kernels for the task of predicting hand movement velocities from cortical recordings. In all of our experiments all the kernels we tested outperform the standard scalar product used in regression with the Spikernel consistently achieving the best performance.",
author = "Lavi Shpigelman and Yoram Singer and Rony Paz and Eilon Vaadia",
year = "2003",
language = "English (US)",
isbn = "0262025507",
series = "Advances in Neural Information Processing Systems",
publisher = "Neural information processing systems foundation",
booktitle = "Advances in Neural Information Processing Systems 15 - Proceedings of the 2002 Conference, NIPS 2002",
note = "16th Annual Neural Information Processing Systems Conference, NIPS 2002 ; Conference date: 09-12-2002 Through 14-12-2002",
}