### Abstract

Although earthquake-induced gravity perturbations are frequently observed, numerical modelling of this phenomenon has remained a challenge. Due to the lack of reliable and versatile numerical tools, induced-gravity data have not been fully exploited to constrain earthquake source parameters. From a numerical perspective, the main challenge stems from the unbounded Poisson/Laplace equation that governs gravity perturbations. Additionally, the Poisson/Laplace equation must be coupled with the equation of conservation of linear momentum that governs particle displacement in the solid. Most existing methods either solve the coupled equations in a fully spherical harmonic representation, which requires models to be (nearly) spherically symmetric, or they solve the Poisson/Laplace equation in the spherical harmonics domain and the momentum equation in a discretized domain, a strategy that compromises accuracy and efficiency. We present a spectral-infinite-element approach that combines the highly accurate and efficient spectral-element method with a mapped-infinite-element method capable of mimicking an infinite domain without adding significant memory or computational costs. We solve the complete coupled momentum-gravitational equations in a fully discretized domain, enabling us to accommodate complex realistic models without compromising accuracy or efficiency. We present several coseismic and post-earthquake examples and benchmark the coseismic examples against the Okubo analytical solutions. Finally, we consider gravity perturbations induced by the 1994 Northridge earthquake in a 3-D model of Southern California. The examples show that our method is very accurate and efficient, and that it is stable for post-earthquake simulations.

Original language | English (US) |
---|---|

Pages (from-to) | 451-468 |

Number of pages | 18 |

Journal | Geophysical Journal International |

Volume | 217 |

Issue number | 1 |

DOIs | |

State | Published - Jan 1 2019 |

### All Science Journal Classification (ASJC) codes

- Geophysics
- Geochemistry and Petrology

## Fingerprint Dive into the research topics of 'Spectral-infinite-element simulations of earthquake-induced gravity perturbations'. Together they form a unique fingerprint.

## Cite this

*Geophysical Journal International*,

*217*(1), 451-468. https://doi.org/10.1093/gji/ggz028