Spectral characteristics of solar near-infrared absorption in cloudy atmospheres

Harshvardhan, William Ridgway, V. Ramaswamy, S. M. Freidenreich, Michael Batey

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Theoretical and experimentally derived estimates of the atmospheric absorption of solar energy in the presence of clouds have been reported to be at variance for quite a long time. A detailed set of near-monochromatic computations of the reflectance, transmittance, and absorptance of a standard midlatitude atmosphere with embedded water clouds is used to identify spectral features in the solar near-infrared that can be utilized to study this discrepancy. The results are framed in terms of the cloud radiative forcing both at the surface and at the top of the atmosphere, and it is shown that water vapor windows are the most sensitive to variations in cloud optical properties and cloud placement in the vertical. The ratio of the cloud radiative forcing at the surface to that at the top of the atmosphere, R, varies from near zero in the band centers at small wavenumbers for high clouds to ∼1 in the band centers at larger wavenumbers for low clouds and to values in excess of 2 in the water vapor windows at small wavenumbers. The possibility of using measurements from space with the future Moderate Resolution Imaging Spectroradiometer (MODIS) and simultaneous surface measurements is discussed. It is also shown that horizontal inhomogeneities in the cloud layers do not alter appreciably the estimates of the R factor, but areal mean cloud absorption is lower for an inhomogeneous cloud having the same mean liquid water as the corresponding homogeneous cloud.

Original languageEnglish (US)
Article number98JD200013
Pages (from-to)28793-28799
Number of pages7
JournalJournal of Geophysical Research Atmospheres
Volume103
Issue numberD22
DOIs
StatePublished - Nov 27 1998

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint

Dive into the research topics of 'Spectral characteristics of solar near-infrared absorption in cloudy atmospheres'. Together they form a unique fingerprint.

Cite this