Abstract
Malaria remains one of the most prevalent infectious diseases worldwide, affecting more than half a billion people annually. Despite many years of research, the mechanisms underlying transcriptional regulation in the malaria-causing Plasmodium spp., and in Apicomplexan parasites generally, remain poorly understood. In Plasmodium, few regulatory elements sufficient to drive gene expression have been characterized, and their cognate DNA-binding proteins remain unknown. This study characterizes the DNA-binding specificities of two members of the recently identified Apicomplexan AP2 (ApiAP2) family of putative transcriptional regulators from Plasmodium falciparum. The ApiAP2 proteins contain AP2 domains homologous to the well characterized plant AP2 family of transcriptional regulators, which play key roles in development and environmental stress response pathways. We assayed ApiAP2 protein-DNA interactions using protein-binding microarrays and combined these results with computational predictions of coexpressed target genes to couple these putative trans factors to corresponding cis-regulatory motifs in Plasmodium. Furthermore, we show that protein-DNA sequence specificity is conserved in orthologous proteins between phylogenetically distant Apicomplexan species. The identification of the DNA-binding specificities for ApiAP2 proteins lays the foundation for the exploration of their role as transcriptional regulators during all stages of parasite development. Because of their origin in the plant lineage, ApiAP2 proteins have no homologues in the human host and may prove to be ideal antimalarial targets.
Original language | English (US) |
---|---|
Pages (from-to) | 8393-8398 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 105 |
Issue number | 24 |
DOIs | |
State | Published - Jun 17 2008 |
All Science Journal Classification (ASJC) codes
- General
Keywords
- Gene expression
- Malaria
- Plasmodium
- Protein-binding microarray
- Protein-DNA interaction