TY - JOUR
T1 - Spatiotemporal patterns of extreme sea levels along the western North-Atlantic coasts
AU - Muis, Sanne
AU - Lin, Ning
AU - Verlaan, Martin
AU - Winsemius, Hessel C.
AU - Ward, Philip J.
AU - Aerts, Jeroen C.J.H.
N1 - Funding Information:
The research leading to these results has received funding from the Netherlands Organisation for Scientific Research (NWO) in the form of a VICI grant (grant no. 453-14-006), Amsterdam Water Science, and US National Science Foundation (grant no. EAR-1520683). S.M. received additional funding from the European research project RISES-AM (grant agreement no. 603396) and was also supported with a Fulbright fellowship as a visiting scholar to the Department of Civil and Environmental Engineering, Princeton University. P.J.W. received additional funding from NWO in the form of a VIDI grant (grant no. 016.161.324). We thank Thomas Wahl and one anonymous reviewer for their comments, which allowed to improve the manuscript. The authors also would like to thank Deepak Vatvani and Maialen Irazoqui Apecechea from Deltares for their support with the GTSM simulations. Reza Marsooli, Nadia Bloemendaal, Anaïs Couasnon are acknowledged for the valuable discussions on tropical cyclones and statistical analysis. We thank SURFsara (www.surfsara.nl) for their support in using the Lisa Computer Cluster. The daily maxima of the surge and total waters of this reanalysis dataset are freely available for other researchers at the archive of the 4TU. Research Data (https://doi.org/10.4121/uuid:e2c315e0-102f-45c6-b834-b89e26229265). Other data may be available upon request (sanne.muis@vu.nl). The input data used are from cited references and is generally freely available online.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The western North-Atlantic coast experienced major coastal floods in recent years. Coastal floods are primarily composed of tides and storm surges due to tropical (TCs) and extra-tropical cyclones (ETCs). We present a reanalysis from 1988 to 2015 of extreme sea levels that explicitly include TCs for the western North-Atlantic coastline. Validation shows a good agreement between modeled and observed sea levels and demonstrates that the framework can capture large-scale variability in extreme sea levels. We apply the 28-year reanalysis to analyze spatiotemporal patterns. Along the US Atlantic coasts the contribution of tides can be significant, with the average contribution of tides during the 10 largest events up to 55% in some locations, whereas along the Mexican Southern Gulf coast, the average contribution of tides over the largest 10 events is generally below 25%. At the US Atlantic coast, ETCs are responsible for 8.5 out of the 10 largest extreme events, whereas at the Gulf Coast and Caribbean TCs dominate. During the TC season more TC-driven events exceed a 10-year return period. During winter, there is a peak in ETC-driven events. Future research directions include coupling the framework with synthetic tropical cyclone tracks and extension to the global scale.
AB - The western North-Atlantic coast experienced major coastal floods in recent years. Coastal floods are primarily composed of tides and storm surges due to tropical (TCs) and extra-tropical cyclones (ETCs). We present a reanalysis from 1988 to 2015 of extreme sea levels that explicitly include TCs for the western North-Atlantic coastline. Validation shows a good agreement between modeled and observed sea levels and demonstrates that the framework can capture large-scale variability in extreme sea levels. We apply the 28-year reanalysis to analyze spatiotemporal patterns. Along the US Atlantic coasts the contribution of tides can be significant, with the average contribution of tides during the 10 largest events up to 55% in some locations, whereas along the Mexican Southern Gulf coast, the average contribution of tides over the largest 10 events is generally below 25%. At the US Atlantic coast, ETCs are responsible for 8.5 out of the 10 largest extreme events, whereas at the Gulf Coast and Caribbean TCs dominate. During the TC season more TC-driven events exceed a 10-year return period. During winter, there is a peak in ETC-driven events. Future research directions include coupling the framework with synthetic tropical cyclone tracks and extension to the global scale.
UR - http://www.scopus.com/inward/record.url?scp=85062430249&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062430249&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-40157-w
DO - 10.1038/s41598-019-40157-w
M3 - Article
C2 - 30833680
AN - SCOPUS:85062430249
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 3391
ER -