TY - GEN
T1 - Spatially regularized streaming sensor selection
AU - Li, Changsheng
AU - Wei, Fan
AU - Dong, Weishan
AU - Wang, Xiangfeng
AU - Yan, Junchi
AU - Zhu, Xiaobin
AU - Liu, Qingshan
AU - Zhang, Xin
N1 - Publisher Copyright:
© Copyright 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2016
Y1 - 2016
N2 - Sensor selection has become an active topic aimed at energy saving, information overload prevention, and communication cost planning in sensor networks. In many real applications, often the sensors' observation regions have overlaps and thus the sensor network is inherently redundant. Therefore it is important to select proper sensors to avoid data redundancy. This paper focuses on how to incrementally select a subset of sensors in a streaming scenario to minimize information redundancy, and meanwhile meet the power consumption constraint. We propose to perform sensor selection in a multivariate interpolation framework, such that the data sampled by the selected sensors can well predict those of the inactive sensors. Importantly, we incorporate sensors' spatial information as two regularizers, which leads to significantly better prediction performance. We also define a statistical variable to store sufficient information for incremental learning, and introduce a forgetting factor to track sensor streams' evolvement. Experiments on both synthetic and real datasets validate the effectiveness of the proposed method. Moreover, our method is over 10 times faster than the state-of-The-Art sensor selection algorithm.
AB - Sensor selection has become an active topic aimed at energy saving, information overload prevention, and communication cost planning in sensor networks. In many real applications, often the sensors' observation regions have overlaps and thus the sensor network is inherently redundant. Therefore it is important to select proper sensors to avoid data redundancy. This paper focuses on how to incrementally select a subset of sensors in a streaming scenario to minimize information redundancy, and meanwhile meet the power consumption constraint. We propose to perform sensor selection in a multivariate interpolation framework, such that the data sampled by the selected sensors can well predict those of the inactive sensors. Importantly, we incorporate sensors' spatial information as two regularizers, which leads to significantly better prediction performance. We also define a statistical variable to store sufficient information for incremental learning, and introduce a forgetting factor to track sensor streams' evolvement. Experiments on both synthetic and real datasets validate the effectiveness of the proposed method. Moreover, our method is over 10 times faster than the state-of-The-Art sensor selection algorithm.
UR - http://www.scopus.com/inward/record.url?scp=85007188930&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007188930&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85007188930
T3 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
SP - 3871
EP - 3879
BT - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
PB - AAAI press
T2 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
Y2 - 12 February 2016 through 17 February 2016
ER -