TY - GEN
T1 - Spatially and temporally resolved fs/ps cars measurements of rotation-vibration non-equilibrium in a ch4/n2 nanosecond-pulsed discharge
AU - Chen, Timothy Y.
AU - Goldberg, Benjamin M.
AU - Kliewer, Christopher J.
AU - Kolemen, Egemen
AU - Ju, Yiguang
N1 - Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Due to concerns about climate change, there is significant interest to establish CH4 lean burn engines or convert it to valuable industrial chemicals using non-equilibrium plasmas. To quantitatively understand the dynamics and chemistry of plasma discharge in CH4 fuel mixtures, it is necessary to obtain time and spatially resolved data of key parameters such as the CH4 concentration and degree of rotation-vibration non-equilibrium. Rotational fs/ps CARS was used to simultaneously measure rotational and vibrational temperatures of a pin-to-pin 40% CH4/60% N2 nanosecond-pulsed discharge at 60 Torr, while the CH4 concentration was measured by vibrational CARS. The measurement region was 2 mm along the electrode axis, within 150 μm of the cathode surface. Gradients in N2 rotational and vibrational temperature and CH4 number density were observed to evolve in time and space. The vibrational temperature peaked above 6000 K, 100 μs after the voltage pulse, and the majority of CH4 consumption occurred during the voltage pulse. Additional CH4 consumption along with rapid heating occurred during the first 2 μs of the afterglow, indicating a role of electronically excited N2 quenching in dissociation of CH4.
AB - Due to concerns about climate change, there is significant interest to establish CH4 lean burn engines or convert it to valuable industrial chemicals using non-equilibrium plasmas. To quantitatively understand the dynamics and chemistry of plasma discharge in CH4 fuel mixtures, it is necessary to obtain time and spatially resolved data of key parameters such as the CH4 concentration and degree of rotation-vibration non-equilibrium. Rotational fs/ps CARS was used to simultaneously measure rotational and vibrational temperatures of a pin-to-pin 40% CH4/60% N2 nanosecond-pulsed discharge at 60 Torr, while the CH4 concentration was measured by vibrational CARS. The measurement region was 2 mm along the electrode axis, within 150 μm of the cathode surface. Gradients in N2 rotational and vibrational temperature and CH4 number density were observed to evolve in time and space. The vibrational temperature peaked above 6000 K, 100 μs after the voltage pulse, and the majority of CH4 consumption occurred during the voltage pulse. Additional CH4 consumption along with rapid heating occurred during the first 2 μs of the afterglow, indicating a role of electronically excited N2 quenching in dissociation of CH4.
UR - http://www.scopus.com/inward/record.url?scp=85100190511&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100190511&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85100190511
SN - 9781624106095
T3 - AIAA Scitech 2021 Forum
SP - 1
EP - 9
BT - AIAA Scitech 2021 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
Y2 - 11 January 2021 through 15 January 2021
ER -