Spatial Correlation Robust Inference

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


We propose a method for constructing confidence intervals that account for many forms of spatial correlation. The interval has the familiar “estimator plus and minus a standard error times a critical value” form, but we propose new methods for constructing the standard error and the critical value. The standard error is constructed using population principal components from a given “worst-case” spatial correlation model. The critical value is chosen to ensure coverage in a benchmark parametric model for the spatial correlations. The method is shown to control coverage in finite sample Gaussian settings in a restricted but nonparametric class of models and in large samples whenever the spatial correlation is weak, that is, with average pairwise correlations that vanish as the sample size gets large. We also provide results on the efficiency of the method.

Original languageEnglish (US)
Pages (from-to)2901-2935
Number of pages35
Issue number6
StatePublished - Nov 2022

All Science Journal Classification (ASJC) codes

  • Economics and Econometrics


  • Confidence interval
  • HAC
  • HAR
  • random field


Dive into the research topics of 'Spatial Correlation Robust Inference'. Together they form a unique fingerprint.

Cite this