Abstract
Federated learning is inherently vulnerable to model poisoning attacks because its decentralized nature allows attackers to participate with compromised devices. In model poisoning attacks, the attacker reduces the model's performance on targeted sub-tasks (e.g. classifying planes as birds) by uploading "poisoned" updates. In this report we introduce SparseFed, a novel defense that uses global top-k update sparsification and device-level gradient clipping to mitigate model poisoning attacks. We propose a theoretical framework for analyzing the robustness of defenses against poisoning attacks, and provide robustness and convergence analysis of our algorithm. To validate its empirical efficacy we conduct an open-source evaluation at scale across multiple benchmark datasets for computer vision and federated learning.
Original language | English (US) |
---|---|
Pages (from-to) | 7587-7624 |
Number of pages | 38 |
Journal | Proceedings of Machine Learning Research |
Volume | 151 |
State | Published - 2022 |
Event | 25th International Conference on Artificial Intelligence and Statistics, AISTATS 2022 - Virtual, Online, Spain Duration: Mar 28 2022 → Mar 30 2022 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability