Sparse representations for limited data tomography

Hstau Y. Liao, Guillermo Sapiro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

45 Scopus citations

Abstract

In limited data tomography, with applications such as electron microscopy and medical imaging, the scanning views are within an angular range that is often both limited and sparsely sampled. In these situations, standard algorithms produce reconstructions with notorious artifacts. We show in this paper that a sparsity image representation principle, based on learning dictionaries for sparse representations of image patches, leads to significantly improved reconstructions of the unknown density from its limited angle projections. The presentation of the underlying framework is complemented with illustrative results on artificial and real data.

Original languageEnglish (US)
Title of host publication2008 5th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, Proceedings, ISBI
Pages1375-1378
Number of pages4
DOIs
StatePublished - 2008
Externally publishedYes
Event2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI - Paris, France
Duration: May 14 2008May 17 2008

Publication series

Name2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Proceedings, ISBI

Conference

Conference2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI
Country/TerritoryFrance
CityParis
Period5/14/085/17/08

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Keywords

  • Limited angle tomography
  • Regularization
  • Sparse representations

Fingerprint

Dive into the research topics of 'Sparse representations for limited data tomography'. Together they form a unique fingerprint.

Cite this