TY - JOUR
T1 - Sorting Nanoparticles by Valency with DNA Barcoding
AU - Emerson, Nyssa T.
AU - Yang, Haw
N1 - Funding Information:
The authors acknowledge the use of Princeton’s Imaging and Analysis Center (IAC), which is partially supported by the Princeton Center for Complex Materials (PCCM), a National Science Foundation (NSF) Materials Research Science and Engineering Center (MRSEC; DMR-2011750). This research was supported by the Gordon and Betty Moore Foundation (Grant #4741).
Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/7/20
Y1 - 2022/7/20
N2 - Self-assembly of DNA-labeled nanoparticles is an effective strategy to fabricate new nanocomposite materials and nanoscale devices from the bottom-up. To tailor the properties of the resulting material or device, one requires access to a wide range of nanoparticle sizes and shapes, as well as control over the number (valency) of DNA molecules on the nanoparticle surface. Currently, nanoparticles with a defined DNA valency can only be obtained in a narrow range of sizes, and in small quantities, limiting the properties of the resulting composite structures and their applications. Here, we leverage the digital information encoded in the number and sequence of short DNA barcodes to generate preparatory amounts of nanoparticles bearing a specific number of DNA molecules, irrespective of the identity of the nanocomponent. We show that this DNA valency sorting chromatography, which is driven by the selective affinity of Watson-Crick base pairs, is applicable to arbitrary DNA sequences and a broad range of nanoparticle sizes, shapes, and material compositions. To further demonstrate this fact, we use valency-sorted large gold nanospheres directly in self-assembly schemes to create, in one synthesis step, large amounts of several previously inaccessible molecule-like dimer and trimer nanostructures with unique optical properties. We anticipate that the expanded scope of DNA valency-defined nanoparticle reagents, and the increased scale at which they can be produced, will open new avenues for the molecularly precise manipulation of nanoscale matter.
AB - Self-assembly of DNA-labeled nanoparticles is an effective strategy to fabricate new nanocomposite materials and nanoscale devices from the bottom-up. To tailor the properties of the resulting material or device, one requires access to a wide range of nanoparticle sizes and shapes, as well as control over the number (valency) of DNA molecules on the nanoparticle surface. Currently, nanoparticles with a defined DNA valency can only be obtained in a narrow range of sizes, and in small quantities, limiting the properties of the resulting composite structures and their applications. Here, we leverage the digital information encoded in the number and sequence of short DNA barcodes to generate preparatory amounts of nanoparticles bearing a specific number of DNA molecules, irrespective of the identity of the nanocomponent. We show that this DNA valency sorting chromatography, which is driven by the selective affinity of Watson-Crick base pairs, is applicable to arbitrary DNA sequences and a broad range of nanoparticle sizes, shapes, and material compositions. To further demonstrate this fact, we use valency-sorted large gold nanospheres directly in self-assembly schemes to create, in one synthesis step, large amounts of several previously inaccessible molecule-like dimer and trimer nanostructures with unique optical properties. We anticipate that the expanded scope of DNA valency-defined nanoparticle reagents, and the increased scale at which they can be produced, will open new avenues for the molecularly precise manipulation of nanoscale matter.
UR - http://www.scopus.com/inward/record.url?scp=85134720803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85134720803&partnerID=8YFLogxK
U2 - 10.1021/jacs.2c04744
DO - 10.1021/jacs.2c04744
M3 - Article
C2 - 35816611
AN - SCOPUS:85134720803
SN - 0002-7863
VL - 144
SP - 12915
EP - 12923
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 28
ER -