### Abstract

Lovász asked whether the following is true for each hypergraph H and natural number k:. (*) if ν_{k} (H^{′}) = k · ν^{*} (H^{′}) holds for each hypergraph H^{′} arising from H by multiplication of points, then ν_{k} (H) = τ_{k} (H);. (* *) if τ_{k} (H^{′}) = k · τ^{*} (H^{′}) holds for each hypergraph H^{′} arising from H by removing edges, then τ_{k} (H) = ν_{k} (H). We prove and generalize assertion (*) and give a counterexample to (* *).

Original language | English (US) |
---|---|

Pages (from-to) | 973-978 |

Number of pages | 6 |

Journal | Discrete Mathematics |

Volume | 306 |

Issue number | 10-11 |

DOIs | |

State | Published - May 28 2006 |

### All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- Discrete Mathematics and Combinatorics

## Fingerprint Dive into the research topics of 'Solution of two fractional packing problems of Lovász'. Together they form a unique fingerprint.

## Cite this

Schrijver, A., & Seymour, P. D. (2006). Solution of two fractional packing problems of Lovász.

*Discrete Mathematics*,*306*(10-11), 973-978. https://doi.org/10.1016/j.disc.2006.03.018