TY - JOUR
T1 - Solid-State Redox Switching of Magnetic Exchange and Electronic Conductivity in a Benzoquinoid-Bridged MnII Chain Compound
AU - Jeon, Ie Rang
AU - Sun, Lei
AU - Negru, Bogdan
AU - Van Duyne, Richard P.
AU - Dinca, Mircea
AU - Harris, T. David
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/5/25
Y1 - 2016/5/25
N2 - We demonstrate that incorporation of a redox-active benzoquinoid ligand into a one-dimensional chain compound can give rise to a material that exhibits simultaneous solid-state redox switching of optical, magnetic, and electronic properties. Metalation of the ligand 4,5-bis(pyridine-2-carboxamido)-1,2-catechol (N,OLH4) with MnIII affords the chain compound Mn(N,OL)(DMSO). Structural and spectroscopic analysis of this compound show the presence of MnII centers bridged by N,OL2- ligands, resulting partially from a spontaneous ligand-to-metal electron transfer. Upon soaking in a solution of the reductant Cp2Co, Mn(N,OL)(DMSO) undergoes a ligand-centered solid-state reduction to [Mn(N,OL)]-, as revealed by a suite of techniques, including Raman and X-ray absorption spectroscopy. The ligand-based reduction engenders a dramatic modulation of the physical properties of the chain compound. An electrochromic response, evidenced by a color change from dark green to dark purple is accompanied by a nearly 40-fold increase in magnetic coupling strength, from J = -0.38(1) to -15.6(2) cm-1, and a 10,000-fold increase in electronic conductivity, from = 2.33(1) × 10-12 S/cm (Ea = 0.64(1) eV) to 8.61(1) × 10-8 S/cm (Ea = 0.39(1) eV). Importantly, the chemical reduction is reversible: treatment of the reduced compound with [Cp2Fe]+ regenerates the oxidized chain. Taken together, these results highlight the ability of benzoquinoid ligands to facilitate solid-state ligand-based redox reactions in nonporous coordination solids, giving rise to reversible switching of optical properties, magnetic exchange interactions, and electronic conductivity.
AB - We demonstrate that incorporation of a redox-active benzoquinoid ligand into a one-dimensional chain compound can give rise to a material that exhibits simultaneous solid-state redox switching of optical, magnetic, and electronic properties. Metalation of the ligand 4,5-bis(pyridine-2-carboxamido)-1,2-catechol (N,OLH4) with MnIII affords the chain compound Mn(N,OL)(DMSO). Structural and spectroscopic analysis of this compound show the presence of MnII centers bridged by N,OL2- ligands, resulting partially from a spontaneous ligand-to-metal electron transfer. Upon soaking in a solution of the reductant Cp2Co, Mn(N,OL)(DMSO) undergoes a ligand-centered solid-state reduction to [Mn(N,OL)]-, as revealed by a suite of techniques, including Raman and X-ray absorption spectroscopy. The ligand-based reduction engenders a dramatic modulation of the physical properties of the chain compound. An electrochromic response, evidenced by a color change from dark green to dark purple is accompanied by a nearly 40-fold increase in magnetic coupling strength, from J = -0.38(1) to -15.6(2) cm-1, and a 10,000-fold increase in electronic conductivity, from = 2.33(1) × 10-12 S/cm (Ea = 0.64(1) eV) to 8.61(1) × 10-8 S/cm (Ea = 0.39(1) eV). Importantly, the chemical reduction is reversible: treatment of the reduced compound with [Cp2Fe]+ regenerates the oxidized chain. Taken together, these results highlight the ability of benzoquinoid ligands to facilitate solid-state ligand-based redox reactions in nonporous coordination solids, giving rise to reversible switching of optical properties, magnetic exchange interactions, and electronic conductivity.
UR - http://www.scopus.com/inward/record.url?scp=84971385372&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971385372&partnerID=8YFLogxK
U2 - 10.1021/jacs.6b02485
DO - 10.1021/jacs.6b02485
M3 - Article
AN - SCOPUS:84971385372
SN - 0002-7863
VL - 138
SP - 6583
EP - 6590
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 20
ER -