TY - JOUR
T1 - Snowballs in Africa
T2 - sectioning a long-lived Neoproterozoic carbonate platform and its bathyal foreslope (NW Namibia)
AU - Hoffman, Paul F.
AU - Halverson, Galen P.
AU - Schrag, Daniel P.
AU - Higgins, John A.
AU - Domack, Eugene W.
AU - Macdonald, Francis A.
AU - Pruss, Sara B.
AU - Blättler, Clara L.
AU - Crockford, Peter W.
AU - Hodgin, E. Blake
AU - Bellefroid, Eric J.
AU - Johnson, Benjamin W.
AU - Hodgskiss, Malcolm S.W.
AU - Lamothe, Kelsey G.
AU - LoBianco, Samuel J.C.
AU - Busch, James F.
AU - Howes, Bolton J.
AU - Greenman, J. Wilder
AU - Nelson, Lyle L.
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/8
Y1 - 2021/8
N2 - Otavi Group is a 1.5–3.5-km-thick epicontinental marine carbonate succession of Neoproterozoic age, exposed in an 800-km-long Ediacaran−Cambrian fold belt that rims the SW cape of Congo craton in northern Namibia. Along its southern margin, a contiguous distally tapered foreslope carbonate wedge of the same age is called Swakop Group. Swakop Group also occurs on the western cratonic margin, where a crustal-scale thrust cuts out the facies transition to the platformal Otavi Group. Subsidence accommodating Otavi Group resulted from S−N crustal stretching (770–655 Ma), followed by post-rift thermal subsidence (655–600 Ma). Rifting under southern Swakop Group continued until 650–635 Ma, culminating with breakup and a S-facing continental margin. No hint of a western margin is evident in Otavi Group, suggesting a transform margin to the west, kinematically consistent with S−N plate divergence. Rift-related peralkaline igneous activity in southern Swakop Group occurred around 760 and 746 Ma, with several rift-related igneous centres undated. By comparison, western Swakop Group is impoverished in rift-related igneous rocks. Despite low paleoelevation and paleolatitude, Otavi and Swakop groups are everywhere imprinted by early and late Cryogenian glaciations, enabling unequivocal stratigraphic division into five epochs (period divisions): (1) non-glacial late Tonian, 770–717 Ma; (2) glacial early Cryogenian/Sturtian, 717–661 Ma; (3) non-glacial middle Cryogenian, 661–646 ± 5 Ma; (4) glacial late Cryogenian/Marinoan, 646 ± 5–635 Ma; and (5) non-glacial early Ediacaran, 635–600 ± 5 Ma. Odd numbered epochs lack evident glacioeustatic fluctuation; even numbered ones were the Sturtian and Marinoan snowball Earths. This study aimed to deconstruct the carbonate succession for insights on the nature of Cryogenian glaciations. It focuses on the well-exposed southwestern apex of the arcuate fold belt, incorporating 585 measured sections (totaling >190 km of strata) and > 8764 pairs of δ13C/δ18Ocarb analyses (tabulated in Supplementary On-line Information). Each glaciation began and ended abruptly, and each was followed by anomalously thick ‘catch-up’ depositional sequences that filled accommodation space created by synglacial tectonic subsidence accompanied by very low average rates of sediment accumulation. Net subsidence was 38% larger on average for the younger glaciation, despite its 3.5–9.3-times shorter duration. Average accumulation rates were subequal, 4.0 vs 3.3–8.8 m Myr−1, despite syn-rift tectonics and topography during Sturtian glaciation, versus passive-margin subsidence during Marinoan. Sturtian deposits everywhere overlie an erosional disconformity or unconformity, with depocenters ≤1.6 km thick localized in subglacial rift basins, glacially carved bedrock troughs and moraine-like buildups. Sturtian deposits are dominated by massive diamictite, and the associated fine-grained laminated sediments appear to be local subglacial meltwater deposits, including a deep subglacial rift basin. No marine ice-grounding line is required in the 110 Sturtian measured sections in our survey. In contrast, the newly-opened southern foreslope was occupied by a Marinoan marine ice grounding zone, which became the dominant repository for glacial debris eroded from the upper foreslope and broad shallow troughs on the Otavi Group platform, which was glaciated but left nearly devoid of glacial deposits. On the distal foreslope, a distinct glacioeustatic falling-stand carbonate wedge is truncated upslope by a glacial disconformity that underlies the main lowstand grounding-zone wedge, which includes a proximal 0.60-km-high grounding-line moraine. Marinoan deposits are recessional overall, since all but the most distal overlie a glacial disconformity. The Marinoan glacial record is that of an early ice maximum and subsequent slow recession and aggradation, due to tectonic subsidence. Terminal deglaciation is recorded by a ferruginous drape of stratified diamictite, choked with ice-rafted debris, abruptly followed by a syndeglacial-postglacial cap-carbonate depositional sequence. Unlike its Sturtian counterpart, the post-Marinoan sequence has a well-developed basal transgressive (i.e., deepening-upward) cap dolomite (16.9 m regional average thickness, n = 140) with idiosyncratic sedimentary features including sheet-crack marine cements, tubestone stromatolites and giant wave ripples. The overlying deeper-water calci-rhythmite includes crystal-fans of former aragonite benthic cement ≤90 m thick, localized in areas of steep sea-floor topography. Marinoan sequence stratigraphy is laid out over ≥0.6 km of paleobathymetric relief. Late Tonian shallow-neritic δ13Ccarb records were obtained from the 0.4-km-thick Devede Fm (~770–760 Ma) in Otavi Group and the 0.7-km-thick Ugab Subgroup (~737–717 Ma) in Swakop Group. Devede Fm is isotopically heavy, +4–8‰ VPDB, and could be correlative with Backlundtoppen Fm (NE Svalbard). Ugab Subgroup post-dates 746 Ma volcanics and shows two negative excursions bridged by heavy δ13C values. The negative excursions could be correlative with Russøya and Garvellach CIEs (carbon isotope excursions) in NE Laurentia. Middle Cryogenian neritic δ13C records from Otavi Group inner platform feature two heavy plateaus bracketed by three negative excursions, correlated with Twitya (NW Canada), Taishir (Mongolia) and Trezona (South Australia) CIEs. The same pattern is observed in carbonate turbidites in distal Swakop Group, with the sub-Marinoan falling-stand wedge hosting the Trezona CIE recovery. Proximal Swakop Group strata equivalent to Taishir CIE and its subsequent heavy plateau are shifted bidirectionally to uniform values of +3.0–3.5‰. Early Ediacaran neritic δ13C records from Otavi Group inner platform display a deep negative excursion associated with the post-Marinoan depositional sequence and heavy values (≤ + 11‰) with extreme point-to-point variability (≤10‰) in the youngest Otavi Group formation. Distal Swakop Group mimics older parts of the early Ediacaran inner platform δ13C records, but after the post-Marinoan negative excursion, proximal Swakop Group values are shifted bidirectionally to +0.9 ± 1.5‰. Destruction of positive and negative CIEs in proximal Swakop Group is tentatively attributed to early seawater-buffered diagenesis (dolomitization), driven by geothermal porewater convection that sucks seawater into the proximal foreslope of the platform. This hypothesis provocatively implies that CIEs originating in epi-platform waters and shed far downslope as turbidites are decoupled from open-ocean DIC (dissolved inorganic carbon), which is recorded by the altered proximal Swakop Group values closer to DIC of modern seawater. Carbonate sedimentation ended when the cratonic margins collided with and were overridden by the Atlantic coast-normal Northern Damara and coast-parallel Kaoko orogens at 0.60–0.58 Ga. A forebulge disconformity separates Otavi/Swakop Group from overlying foredeep clastics. In the cratonic cusp, where the orogens meet at a right angle, the forebulge disconformity has an astounding ≥1.85 km of megakarstic relief, and km-thick mass slides were displaced gravitationally toward both trenches, prior to orogenic shortening responsible for the craton-rimming fold belt.
AB - Otavi Group is a 1.5–3.5-km-thick epicontinental marine carbonate succession of Neoproterozoic age, exposed in an 800-km-long Ediacaran−Cambrian fold belt that rims the SW cape of Congo craton in northern Namibia. Along its southern margin, a contiguous distally tapered foreslope carbonate wedge of the same age is called Swakop Group. Swakop Group also occurs on the western cratonic margin, where a crustal-scale thrust cuts out the facies transition to the platformal Otavi Group. Subsidence accommodating Otavi Group resulted from S−N crustal stretching (770–655 Ma), followed by post-rift thermal subsidence (655–600 Ma). Rifting under southern Swakop Group continued until 650–635 Ma, culminating with breakup and a S-facing continental margin. No hint of a western margin is evident in Otavi Group, suggesting a transform margin to the west, kinematically consistent with S−N plate divergence. Rift-related peralkaline igneous activity in southern Swakop Group occurred around 760 and 746 Ma, with several rift-related igneous centres undated. By comparison, western Swakop Group is impoverished in rift-related igneous rocks. Despite low paleoelevation and paleolatitude, Otavi and Swakop groups are everywhere imprinted by early and late Cryogenian glaciations, enabling unequivocal stratigraphic division into five epochs (period divisions): (1) non-glacial late Tonian, 770–717 Ma; (2) glacial early Cryogenian/Sturtian, 717–661 Ma; (3) non-glacial middle Cryogenian, 661–646 ± 5 Ma; (4) glacial late Cryogenian/Marinoan, 646 ± 5–635 Ma; and (5) non-glacial early Ediacaran, 635–600 ± 5 Ma. Odd numbered epochs lack evident glacioeustatic fluctuation; even numbered ones were the Sturtian and Marinoan snowball Earths. This study aimed to deconstruct the carbonate succession for insights on the nature of Cryogenian glaciations. It focuses on the well-exposed southwestern apex of the arcuate fold belt, incorporating 585 measured sections (totaling >190 km of strata) and > 8764 pairs of δ13C/δ18Ocarb analyses (tabulated in Supplementary On-line Information). Each glaciation began and ended abruptly, and each was followed by anomalously thick ‘catch-up’ depositional sequences that filled accommodation space created by synglacial tectonic subsidence accompanied by very low average rates of sediment accumulation. Net subsidence was 38% larger on average for the younger glaciation, despite its 3.5–9.3-times shorter duration. Average accumulation rates were subequal, 4.0 vs 3.3–8.8 m Myr−1, despite syn-rift tectonics and topography during Sturtian glaciation, versus passive-margin subsidence during Marinoan. Sturtian deposits everywhere overlie an erosional disconformity or unconformity, with depocenters ≤1.6 km thick localized in subglacial rift basins, glacially carved bedrock troughs and moraine-like buildups. Sturtian deposits are dominated by massive diamictite, and the associated fine-grained laminated sediments appear to be local subglacial meltwater deposits, including a deep subglacial rift basin. No marine ice-grounding line is required in the 110 Sturtian measured sections in our survey. In contrast, the newly-opened southern foreslope was occupied by a Marinoan marine ice grounding zone, which became the dominant repository for glacial debris eroded from the upper foreslope and broad shallow troughs on the Otavi Group platform, which was glaciated but left nearly devoid of glacial deposits. On the distal foreslope, a distinct glacioeustatic falling-stand carbonate wedge is truncated upslope by a glacial disconformity that underlies the main lowstand grounding-zone wedge, which includes a proximal 0.60-km-high grounding-line moraine. Marinoan deposits are recessional overall, since all but the most distal overlie a glacial disconformity. The Marinoan glacial record is that of an early ice maximum and subsequent slow recession and aggradation, due to tectonic subsidence. Terminal deglaciation is recorded by a ferruginous drape of stratified diamictite, choked with ice-rafted debris, abruptly followed by a syndeglacial-postglacial cap-carbonate depositional sequence. Unlike its Sturtian counterpart, the post-Marinoan sequence has a well-developed basal transgressive (i.e., deepening-upward) cap dolomite (16.9 m regional average thickness, n = 140) with idiosyncratic sedimentary features including sheet-crack marine cements, tubestone stromatolites and giant wave ripples. The overlying deeper-water calci-rhythmite includes crystal-fans of former aragonite benthic cement ≤90 m thick, localized in areas of steep sea-floor topography. Marinoan sequence stratigraphy is laid out over ≥0.6 km of paleobathymetric relief. Late Tonian shallow-neritic δ13Ccarb records were obtained from the 0.4-km-thick Devede Fm (~770–760 Ma) in Otavi Group and the 0.7-km-thick Ugab Subgroup (~737–717 Ma) in Swakop Group. Devede Fm is isotopically heavy, +4–8‰ VPDB, and could be correlative with Backlundtoppen Fm (NE Svalbard). Ugab Subgroup post-dates 746 Ma volcanics and shows two negative excursions bridged by heavy δ13C values. The negative excursions could be correlative with Russøya and Garvellach CIEs (carbon isotope excursions) in NE Laurentia. Middle Cryogenian neritic δ13C records from Otavi Group inner platform feature two heavy plateaus bracketed by three negative excursions, correlated with Twitya (NW Canada), Taishir (Mongolia) and Trezona (South Australia) CIEs. The same pattern is observed in carbonate turbidites in distal Swakop Group, with the sub-Marinoan falling-stand wedge hosting the Trezona CIE recovery. Proximal Swakop Group strata equivalent to Taishir CIE and its subsequent heavy plateau are shifted bidirectionally to uniform values of +3.0–3.5‰. Early Ediacaran neritic δ13C records from Otavi Group inner platform display a deep negative excursion associated with the post-Marinoan depositional sequence and heavy values (≤ + 11‰) with extreme point-to-point variability (≤10‰) in the youngest Otavi Group formation. Distal Swakop Group mimics older parts of the early Ediacaran inner platform δ13C records, but after the post-Marinoan negative excursion, proximal Swakop Group values are shifted bidirectionally to +0.9 ± 1.5‰. Destruction of positive and negative CIEs in proximal Swakop Group is tentatively attributed to early seawater-buffered diagenesis (dolomitization), driven by geothermal porewater convection that sucks seawater into the proximal foreslope of the platform. This hypothesis provocatively implies that CIEs originating in epi-platform waters and shed far downslope as turbidites are decoupled from open-ocean DIC (dissolved inorganic carbon), which is recorded by the altered proximal Swakop Group values closer to DIC of modern seawater. Carbonate sedimentation ended when the cratonic margins collided with and were overridden by the Atlantic coast-normal Northern Damara and coast-parallel Kaoko orogens at 0.60–0.58 Ga. A forebulge disconformity separates Otavi/Swakop Group from overlying foredeep clastics. In the cratonic cusp, where the orogens meet at a right angle, the forebulge disconformity has an astounding ≥1.85 km of megakarstic relief, and km-thick mass slides were displaced gravitationally toward both trenches, prior to orogenic shortening responsible for the craton-rimming fold belt.
KW - Carbon isotope excursion
KW - Carbonate platform
KW - Congo craton
KW - Cryogenian
KW - Diagenesis
KW - Ediacaran
KW - Glaciation
KW - Marinoan
KW - Megakarst
KW - Namibia
KW - Neoproterozoic
KW - Snowball Earth
KW - Sturtian
KW - Tonian
UR - http://www.scopus.com/inward/record.url?scp=85111871614&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111871614&partnerID=8YFLogxK
U2 - 10.1016/j.earscirev.2021.103616
DO - 10.1016/j.earscirev.2021.103616
M3 - Review article
AN - SCOPUS:85111871614
SN - 0012-8252
VL - 219
JO - Earth-Science Reviews
JF - Earth-Science Reviews
M1 - 103616
ER -