Smoothing Brascamp-Lieb inequalities and strong converses for common randomness generation

Jingbo Liu, Thomas A. Courtade, Paul Cuff, Sergio Verdu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

We study the infimum of the best constant in a functional inequality, the Brascamp-Lieb-like inequality, over auxiliary measures within a neighborhood of a product distribution. In the finite alphabet and the Gaussian cases, such an infimum converges to the best constant in a mutual information inequality. Implications for strong converse properties of two common randomness (CR) generation problems are discussed. In particular, we prove the strong converse property of the rate region for the omniscient helper CR generation problem in the discrete and the Gaussian cases. The latter case is a rare instance of a strong converse for a continuous source when the rate region involves auxiliary random variables.

Original languageEnglish (US)
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1043-1047
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - Aug 10 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: Jul 10 2016Jul 15 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Other

Other2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period7/10/167/15/16

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Smoothing Brascamp-Lieb inequalities and strong converses for common randomness generation'. Together they form a unique fingerprint.

Cite this