Smooth-projected neighborhood pursuit for high-dimensional nonparanormal graph estimation

Tuo Zhao, Kathryn Roeder, Han Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

We introduce a new learning algorithm, named smooth-projected neighborhood pursuit, for estimating high dimensional undirected graphs. In particularly, we focus on the nonparanormal graphical model and provide theoretical guarantees for graph estimation consistency. In addition to new computational and theoretical analysis, we also provide an alternative view to analyze the tradeoff between computational efficiency and statistical error under a smoothing optimization framework. Numerical results on both synthetic and real datasets are provided to support our theory.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages162-170
Number of pages9
StatePublished - Dec 1 2012
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: Dec 3 2012Dec 6 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume1
ISSN (Print)1049-5258

Other

Other26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
CountryUnited States
CityLake Tahoe, NV
Period12/3/1212/6/12

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Smooth-projected neighborhood pursuit for high-dimensional nonparanormal graph estimation'. Together they form a unique fingerprint.

Cite this