@inproceedings{2807502d567f4e3d96b389a95cce5c56,
title = "Smarter security in the smart grid",
abstract = "A new formulation for detection of false data injection attacks in the smart grid is introduced. The attack detection problem is posed as a statistical learning problem in which the observed measurements are classified as being either attacked or secure. The proposed approach provides an attack detection framework that surmounts over the constraints arising due to the sparse structure of the problem and implicitly exploits any available prior knowledge about the system. Specifically, three supervised learning algorithms are presented. These procedures operate by first observing the power system in order to construct a training dataset which is later used to detect the attacks in new observations. In order to assess the validity of the proposed techniques, the behavior of the proposed algorithms is examined on IEEE test systems.",
keywords = "Smart grid security, attack detection, classification, convex optimization, machine learning",
author = "Mete Ozay and Inaki Esnaola and {Yarman Vural}, {Fatos T.} and Kulkarni, {Sanjeev R.} and {Vincent Poor}, H.",
year = "2012",
doi = "10.1109/SmartGridComm.2012.6486002",
language = "English (US)",
isbn = "9781467309110",
series = "2012 IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012",
pages = "312--317",
booktitle = "2012 IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012",
note = "2012 IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012 ; Conference date: 05-11-2012 Through 08-11-2012",
}