TY - JOUR
T1 - Slow photoelectron velocity-map imaging of cold C7 - and C9 -
AU - Babin, Mark C.
AU - Devine, Jessalyn A.
AU - Weichman, Marissa L.
AU - Neumark, Daniel M.
N1 - Publisher Copyright:
© 2018 Author(s).
PY - 2018/11/7
Y1 - 2018/11/7
N2 - High-resolution anion photoelectron spectra of cryogenically cooled C7 - and C9 - clusters obtained using slow photoelectron velocity-map imaging are presented, providing insight into the vibronic structure of neutral C7 and C9. These spectra yield accurate measurements of vibrational frequencies for the neutral clusters as well as electron affinities of 3.3517(4) and 3.6766(14) eV for C7 and C9, respectively. In the C7 - spectrum, transitions involving the previously unreported v1 and v2 symmetric stretching modes, as well as the v9, v10, and v11 asymmetric bending modes, are assigned. Spin-orbit splitting is observed for several transitions in this spectrum, giving an energy difference of 28(6) cm-1 between the Π1/2g2 and Π3/2g2 spin-orbit levels of the C7 - anion. In the spectrum of C9 -, transitions involving the previously unreported symmetric stretch v1 and the asymmetric bend v11 are observed. In both spectra, several features are assigned to Franck-Condon forbidden transitions involving the doubly degenerate v10 and v11 modes of C7 and the v13 and v14 modes of C9. The appearance of these transitions is attributed to Herzberg-Teller coupling between the electronic states of the neutral clusters. Additional FC-forbidden transitions to states previously observed in gas-phase infrared experiments are observed and attributed to vibronic coupling between the electronic states of the anion, resulting in non-totally symmetric character in the anion's full vibrational ground state. Finally, consideration of the energy dependence of detachment cross sections and Dyson orbital analyses reveal that addition of more carbon atoms to the linear chain results in photodetachment from delocalized molecular orbitals with increasing nodal structure, leading to threshold photodetachment cross sections that differ considerably from simple symmetry considerations.
AB - High-resolution anion photoelectron spectra of cryogenically cooled C7 - and C9 - clusters obtained using slow photoelectron velocity-map imaging are presented, providing insight into the vibronic structure of neutral C7 and C9. These spectra yield accurate measurements of vibrational frequencies for the neutral clusters as well as electron affinities of 3.3517(4) and 3.6766(14) eV for C7 and C9, respectively. In the C7 - spectrum, transitions involving the previously unreported v1 and v2 symmetric stretching modes, as well as the v9, v10, and v11 asymmetric bending modes, are assigned. Spin-orbit splitting is observed for several transitions in this spectrum, giving an energy difference of 28(6) cm-1 between the Π1/2g2 and Π3/2g2 spin-orbit levels of the C7 - anion. In the spectrum of C9 -, transitions involving the previously unreported symmetric stretch v1 and the asymmetric bend v11 are observed. In both spectra, several features are assigned to Franck-Condon forbidden transitions involving the doubly degenerate v10 and v11 modes of C7 and the v13 and v14 modes of C9. The appearance of these transitions is attributed to Herzberg-Teller coupling between the electronic states of the neutral clusters. Additional FC-forbidden transitions to states previously observed in gas-phase infrared experiments are observed and attributed to vibronic coupling between the electronic states of the anion, resulting in non-totally symmetric character in the anion's full vibrational ground state. Finally, consideration of the energy dependence of detachment cross sections and Dyson orbital analyses reveal that addition of more carbon atoms to the linear chain results in photodetachment from delocalized molecular orbitals with increasing nodal structure, leading to threshold photodetachment cross sections that differ considerably from simple symmetry considerations.
UR - http://www.scopus.com/inward/record.url?scp=85056273806&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056273806&partnerID=8YFLogxK
U2 - 10.1063/1.5054792
DO - 10.1063/1.5054792
M3 - Article
C2 - 30409019
AN - SCOPUS:85056273806
SN - 0021-9606
VL - 149
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 17
M1 - 174306
ER -