Abstract
A single-threshold processor is derived for a wide class of classical binary decision problems involving the likelihood-ratio detection of a signal embedded in noise. The class of problems we consider encompasses the case of multiple independent (but not necessarily identically distributed) observations of a nonnegative (nonpositive) signal, embedded in additive, independent, and noninterfering noise, where the range of the signal and noise is discrete. We show that a comparison of the sum of the observations with a unique threshold comprises optimum processing, if a weak condition on the noise is satisfied, independent of the signal. Examples of noise densities that satisfy and violate our condition are presented. The results are applied to a generalized photocounting optical communication system, and it is shown that most components of the system can be incorporated into our model. The continuous case is treated elsewhere [IEEE Trans. Inf. Theory IT-25, (March, 1979)].
Original language | English (US) |
---|---|
Pages (from-to) | 3576-3583 |
Number of pages | 8 |
Journal | Applied Optics |
Volume | 17 |
Issue number | 22 |
DOIs | |
State | Published - Nov 15 1978 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics
- Engineering (miscellaneous)
- Electrical and Electronic Engineering