Abstract
Cameras that capture color and depth information have become an essential imaging modality for applications in robotics, autonomous driving, virtual, and augmented reality. Existing RGB-D cameras rely on multiple sensors or active illumination with specialized sensors. In this work, we propose a method for monocular single-shot RGB-D imaging. Instead of learning depth from single-image depth cues, we revisit double-refraction imaging using a birefractive medium, measuring depth as the displacement of differently refracted images superimposed in a single capture. However, existing double-refraction methods are orders of magnitudes too slow to be used in real-time applications, e.g., in robotics, and provide only inaccurate depth due to correspondence ambiguity in double reflection. We resolve this ambiguity optically by leveraging the orthogonality of the two linearly polarized rays in double refraction - introducing uneven double refraction by adding a linear polarizer to the birefractive medium. Doing so makes it possible to develop a real-time method for reconstructing sparse depth and color simultaneously in real-time. We validate the proposed method, both synthetically and experimentally, and demonstrate 3D object detection and photographic applications.
Original language | English (US) |
---|---|
Article number | 9157031 |
Pages (from-to) | 2462-2471 |
Number of pages | 10 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
State | Published - 2020 |
Event | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States Duration: Jun 14 2020 → Jun 19 2020 |
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition