TY - GEN
T1 - Single-dataset Experts for Multi-dataset Question Answering
AU - Friedman, Dan
AU - Dodge, Ben
AU - Chen, Danqi
N1 - Publisher Copyright:
© 2021 Association for Computational Linguistics
PY - 2021
Y1 - 2021
N2 - Many datasets have been created for training reading comprehension models, and a natural question is whether we can combine them to build models that (1) perform better on all of the training datasets and (2) generalize and transfer better to new datasets. Prior work has addressed this goal by training one network simultaneously on multiple datasets, which works well on average but is prone to over- or under-fitting different sub-distributions and might transfer worse compared to source models with more overlap with the target dataset. Our approach is to model multi-dataset question answering with an ensemble of single-dataset experts, by training a collection of lightweight, dataset-specific adapter modules (Houlsby et al., 2019) that share an underlying Transformer model. We find that these Multi-Adapter Dataset Experts (MADE) outperform all our baselines in terms of in-distribution accuracy, and simple methods based on parameter-averaging lead to better zero-shot generalization and few-shot transfer performance, offering a strong and versatile starting point for building new reading comprehension systems.
AB - Many datasets have been created for training reading comprehension models, and a natural question is whether we can combine them to build models that (1) perform better on all of the training datasets and (2) generalize and transfer better to new datasets. Prior work has addressed this goal by training one network simultaneously on multiple datasets, which works well on average but is prone to over- or under-fitting different sub-distributions and might transfer worse compared to source models with more overlap with the target dataset. Our approach is to model multi-dataset question answering with an ensemble of single-dataset experts, by training a collection of lightweight, dataset-specific adapter modules (Houlsby et al., 2019) that share an underlying Transformer model. We find that these Multi-Adapter Dataset Experts (MADE) outperform all our baselines in terms of in-distribution accuracy, and simple methods based on parameter-averaging lead to better zero-shot generalization and few-shot transfer performance, offering a strong and versatile starting point for building new reading comprehension systems.
UR - http://www.scopus.com/inward/record.url?scp=85127080483&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127080483&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85127080483
T3 - EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings
SP - 6128
EP - 6137
BT - EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings
PB - Association for Computational Linguistics (ACL)
T2 - 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021
Y2 - 7 November 2021 through 11 November 2021
ER -