Single-crystal elasticity of diaspore, AlOOH, to 12 GPa by Brillouin scattering

Fuming Jiang, Juraj Majzlan, Sergio Speziale, Duanwei He, Thomas S. Duffy

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The high-pressure elasticity of diaspore (AlOOH) has been determined by Brillouin spectroscopy to 12 GPa in diamond anvil cells. Experiments were carried out using a 16:3:1 methanol-ethanol-water mixture as pressure medium, and ruby as pressure standard. Acoustic velocities were measured in three roughly orthogonal planes at ambient and eight elevated pressures. The nine individual elastic stiffness constants of the orthorhombic crystal were obtained by fitting the velocity data to Christoffel's equation. Aggregate elastic moduli and pressure derivatives were calculated from the Cijs by fits to Eulerian finite strain equations, yielding: KS0 = 152 (1) GPa, G0 = 117.2(5) GPa, (∂ KS / ∂ P)T0 = 3.7 (1), (∂ G / ∂ P)0 = 1.5 (1) for the Voigt-Reuss-Hill average. All individual Cijs increase with pressure but C23 and C55 exhibit anomalously low pressure derivatives. From calculated linear compressibilities, the a-axis is the most compressible. The b-axis becomes the least compressible axis at high pressures. Over the examined pressure range, the azimuthal P-wave anisotropy decreased from 22% to 16%, while the azimuthal S-wave anisotropy increased from 15% to 21%. Both volume and axial compression curves calculated using our Brillouin results are in good agreement with the results from static compression studies. High-pressure sound velocities in diaspore exceed those of other hydrous minerals as well as many anhydrous phases relevant to Earth's upper mantle.

Original languageEnglish (US)
Pages (from-to)221-228
Number of pages8
JournalPhysics of the Earth and Planetary Interiors
Volume170
Issue number3-4
DOIs
StatePublished - Nov 2008

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Geophysics
  • Physics and Astronomy (miscellaneous)
  • Space and Planetary Science

Keywords

  • Brillouin spectroscopy
  • Diaspore
  • Elasticity
  • High-pressure
  • Sound velocity

Fingerprint

Dive into the research topics of 'Single-crystal elasticity of diaspore, AlOOH, to 12 GPa by Brillouin scattering'. Together they form a unique fingerprint.

Cite this