Simultaneous transport of two bacterial strains in intact cores from Oyster, Virginia: Biological effects and numerical modeling

Hailiang Dong, Randi Rothmel, Tullis C. Onstott, Mark E. Fuller, Mary F. DeFlaun, Sheryl H. Streger, Robb Dunlap, Madilyn Fletcher

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


The transport characteristics of two adhesion-deficient, indigenous groundwater strains, Comamonas sp. strain DA001 and Erwinia herbicola OYS2-A, were studied by using intact sediment cores (7 by 50 cm) from Oyster, Va. Both strains are gram-negative rods (1.10 by 0.56 and 1.56 by 0.46 μm, respectively) with strongly hydrophilic membranes and a slightly negative surface charge. The two strains exhibited markedly different behaviors when they were transported through granular porous sediment. To eliminate any effects of physical and chemical heterogeneity on bacterial transport and thus isolate the biological effect, the two strains were simultaneously injected into the same core. DA001 cells were metabolically labeled with 35S and tagged with a vital fluorescent stain, while OYS2-A cells were metabolically labeled with 14C. The fast decay of35S allowed deconvolution of the two isotopes (and therefore the two strains). Dramatic differences in the transport behaviors were observed. The breakthrough of DA001 and the breakthrough of OYS2-A both occurred before the breakthrough of a conservative tracer (termed differential advection), with effluent recoveries of 55 and 30%, respectively. The retained bacterial concentration of OYS2-A in the sediment was twofold higher than that of DA001. Among the cell properties analyzed, the statistically significant differences between the two strains were cell length and diameter. The shorter, larger-diameter DA001 cells displayed a higher effluent recovery than the longer, smaller-diameter OYS2-A cells. CXTFIT modeling results indicated that compared to the DA001 cells, the OYS2-A cells experienced lower pore velocity, higher porosity, a higher attachment rate, and a lower detachment rate. All these factors may contribute to the observed differences in transport.

Original languageEnglish (US)
Pages (from-to)2120-2132
Number of pages13
JournalApplied and Environmental Microbiology
Issue number5
StatePublished - 2002

All Science Journal Classification (ASJC) codes

  • Applied Microbiology and Biotechnology
  • Food Science
  • Biotechnology
  • Ecology


Dive into the research topics of 'Simultaneous transport of two bacterial strains in intact cores from Oyster, Virginia: Biological effects and numerical modeling'. Together they form a unique fingerprint.

Cite this