Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion

D. Caprioli, Anatoly Spitkovsky

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

We use large hybrid (kinetic-protons-fluid-electrons) simulations to investigate the transport of energetic particles in self-consistent electromagnetic configurations of collisionless shocks. In previous papers of this series, we showed that ion acceleration may be very efficient (up to 10%-20% in energy), and outlined how the streaming of energetic particles amplifies the upstream magnetic field. Here, we measure particle diffusion around shocks with different strengths, finding that the mean free path for pitch-angle scattering of energetic ions is comparable with their gyroradii calculated in the self-generated turbulence. For moderately strong shocks, magnetic field amplification proceeds in the quasi-linear regime, and particles diffuse according to the self-generated diffusion coefficient, i.e., the scattering rate depends only on the amount of energy in modes with wavelengths comparable with the particle gyroradius. For very strong shocks, instead, the magnetic field is amplified up to non-linear levels, with most of the energy in modes with wavelengths comparable to the gyroradii of highest-energy ions, and energetic particles experience Bohm-like diffusion in the amplified field. We also show how enhanced diffusion facilitates the return of energetic particles to the shock, thereby determining the maximum energy that can be achieved in a given time via diffusive shock acceleration. The parameterization of the diffusion coefficient that we derive can be used to introduce self-consistent microphysics into large-scale models of cosmic ray acceleration in astrophysical sources, such as supernova remnants and clusters of galaxies.

Original languageEnglish (US)
Article number47
JournalAstrophysical Journal
Volume794
Issue number1
DOIs
StatePublished - Oct 10 2014

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • ISM: magnetic fields
  • ISM: supernova remnants
  • acceleration of particles
  • shock waves

Fingerprint

Dive into the research topics of 'Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion'. Together they form a unique fingerprint.

Cite this