Simulations of anti-parallel reconnection using a nonlocal heat flux closure

Jonathan Ng, Ammar Hakim, A. Bhattacharjee, Adam Stanier, W. Daughton

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The integration of kinetic effects in fluid models is important for global simulations of the Earth's magnetosphere. In particular, it has been shown that ion kinetics play a crucial role in the dynamics of large reconnecting systems, and that higher-order fluid moment models can account for some of these effects. Here, we use a ten-moment model for electrons and ions, which includes the off diagonal elements of the pressure tensor that are important for magnetic reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework. The closure is tested using the island coalescence problem, which is sensitive to ion dynamics. We demonstrate that the nonlocal closure is able to self-consistently reproduce the structure of the ion diffusion region, pressure tensor, and ion velocity without the need for fine-tuning of relaxation coefficients present in earlier models.

Original languageEnglish (US)
Article number082112
JournalPhysics of Plasmas
Volume24
Issue number8
DOIs
StatePublished - Aug 1 2017

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Simulations of anti-parallel reconnection using a nonlocal heat flux closure'. Together they form a unique fingerprint.

Cite this