Abstract
We use kinetic hybrid simulations (kinetic ions-fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.
Original language | English (US) |
---|---|
Article number | L28 |
Journal | Astrophysical Journal Letters |
Volume | 798 |
Issue number | 2 |
DOIs | |
State | Published - Jan 10 2015 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- acceleration of particles
- cosmic rays
- shock waves