TY - JOUR
T1 - Simulation study of twisted crystal growth in organic thin films
AU - Fang, Alta
AU - Haataja, Mikko
N1 - Publisher Copyright:
© 2015 American Physical Society. ©2015 American Physical Society.
PY - 2015/10/15
Y1 - 2015/10/15
N2 - Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies such as banded spherulites, curved dendrites, and "s"- or "c"-shaped needle crystals to be simulated. When twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning rate.
AB - Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies such as banded spherulites, curved dendrites, and "s"- or "c"-shaped needle crystals to be simulated. When twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning rate.
UR - http://www.scopus.com/inward/record.url?scp=84945208314&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84945208314&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.92.042404
DO - 10.1103/PhysRevE.92.042404
M3 - Article
C2 - 26565254
AN - SCOPUS:84945208314
SN - 1539-3755
VL - 92
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 4
M1 - 042404
ER -