Simulation of Heat Transfer in a Vertical Tubular CVD Reactor

D. Cai, L. L. Zheng, Y. Wan, M. Chandra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Polysilicon growth has increased due to its broad applications and market demand. The traditional method for polysilicon growth is based on the Siemens process. To improve the throughput, a new system with either large growth surface or other mechanism for high deposition rate is necessary. A novel design, using a vertical tubular CVD reactor has been recently proposed, in which an enlarged surface reaction area exits. This study is to investigate the optimal conditions for growth through numerical simulation of heat and mass transfer in the proposed vertical tubular CVD reactor. A complex computational model is developed that is capable of describing multi-component fluid flow, gas/surface chemistry, conjugate heat transfer, thermal radiation, and species transport. Different from the classical Siemens system, the bulk poly-silicon in a vertical tube growth has a complicated geometry. To accurately predict the various parameters covering broad range of scales, a multi-block grid generation system is used. Numerical computation has been conducted under different operating conditions, and in particular the effect of cooling gas flow direction and flow rate on the temperature distribution of the system and the polysilicon deposition rate has been investigated. Numerical results show that cooling from the top of the system is preferred.

Original languageEnglish (US)
Title of host publicationProceedings of the 2003 ASME Summer Heat Transfer Conference, Volume 3
PublisherAmerican Society of Mechanical Engineers
Pages673-680
Number of pages8
ISBN (Print)0791836959, 9780791836958
DOIs
StatePublished - 2003
Externally publishedYes
Event2003 ASME Summer Heat Transfer Conference (HT2003) - Las Vegas, NV, United States
Duration: Jul 21 2003Jul 23 2003

Publication series

NameProceedings of the ASME Summer Heat Transfer Conference
Volume2003

Other

Other2003 ASME Summer Heat Transfer Conference (HT2003)
Country/TerritoryUnited States
CityLas Vegas, NV
Period7/21/037/23/03

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Simulation of Heat Transfer in a Vertical Tubular CVD Reactor'. Together they form a unique fingerprint.

Cite this