Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model

Thomas L. Delworth, Anthony Rosati, Whit Anderson, Alistair J. Adcroft, V. Balaji, Rusty Benson, Keith Dixon, Stephen M. Griffies, Hyun Chul Lee, Ronald C. Pacanowski, Gabriel Andres Vecchi, Andrew T. Wittenberg, Fanrong Zeng, Rong Zhang

Research output: Contribution to journalArticlepeer-review

446 Scopus citations


The authors present results for simulated climate and climate change from a newly developed highresolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes. Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO 2 increases at 1% yr -1 until doubling after 70 yr. Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an improved simulation of ENSO. Regional precipitation features are much improved. The Indian monsoon and Amazonian rainfall are also substantially more realistic in CM2.5. The response of CM2.5 to a doubling of atmospheric CO 2 has many features in common with CM2.1, with some notable differences. For example, rainfall changes over the Mediterranean appear to be tightly linked to topography in CM2.5, in contrast to CM2.1 where the response is more spatially homogeneous. In addition, in CM2.5 the near-surface ocean warms substantially in the high latitudes of the Southern Ocean, in contrast to simulations using CM2.1.

Original languageEnglish (US)
Pages (from-to)2755-2781
Number of pages27
JournalJournal of Climate
Issue number8
StatePublished - Apr 2012

All Science Journal Classification (ASJC) codes

  • Atmospheric Science


  • Air-sea interaction
  • Climate models
  • Model evaluation/performance
  • Ocean circulation
  • Ocean models


Dive into the research topics of 'Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model'. Together they form a unique fingerprint.

Cite this