Abstract
We focus on the problem of maximum a posteriori (MAP) inference in Markov random fields with binary variables and pairwise interactions. For this common subclass of inference tasks, we consider low-rank relaxations that interpolate between the discrete problem and its full-rank semidefinite relaxation. We develop new theoretical bounds studying the effect of rank, showing that as the rank grows, the relaxed objective increases but saturates, and that the fraction in objective value retained by the rounded discrete solution decreases. In practice, we show two algorithms for optimizing the low-rank objectives which are simple to implement, enjoy ties to the underlying theory, and outperform existing approaches on benchmark MAP inference tasks.
Original language | English (US) |
---|---|
Pages (from-to) | 3077-3085 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
Volume | 4 |
Issue number | January |
State | Published - 2014 |
Event | 28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada Duration: Dec 8 2014 → Dec 13 2014 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing