Simple Entity-Centric Questions Challenge Dense Retrievers

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee, Danqi Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

61 Scopus citations

Abstract

Open-domain question answering has exploded in popularity recently due to the success of dense retrieval models, which have surpassed sparse models using only a few supervised training examples. However, in this paper, we demonstrate current dense models are not yet the holy grail of retrieval. We first construct EntityQuestions, a set of simple, entity-rich questions based on facts from Wikidata (e.g., “Where was Arve Furset born?”), and observe that dense retrievers drastically underperform sparse methods. We investigate this issue and uncover that dense retrievers can only generalize to common entities unless the question pattern is explicitly observed during training. We discuss two simple solutions towards addressing this critical problem. First, we demonstrate that data augmentation is unable to fix the generalization problem. Second, we argue a more robust passage encoder helps facilitate better question adaptation using specialized question encoders. We hope our work can shed light on the challenges in creating a robust, universal dense retriever that works well across different input distributions.

Original languageEnglish (US)
Title of host publicationEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings
PublisherAssociation for Computational Linguistics (ACL)
Pages6138-6148
Number of pages11
ISBN (Electronic)9781955917094
StatePublished - 2021
Externally publishedYes
Event2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 - Virtual, Punta Cana, Dominican Republic
Duration: Nov 7 2021Nov 11 2021

Publication series

NameEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021
Country/TerritoryDominican Republic
CityVirtual, Punta Cana
Period11/7/2111/11/21

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Simple Entity-Centric Questions Challenge Dense Retrievers'. Together they form a unique fingerprint.

Cite this