Silicon photonics for AI hardware

B. J. Shastri, B. A. Marquez, M. Filipovich, Z. Guo, E. R. Howard, H. Morison, A. N. Tait, T. Ferreira de Lima, C. Huang, P. R. Prucnal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Neuromorphic photonic processors promise orders of magnitude improvements in both speed and energy efficiency over purely digital electronic approaches. We will provide an overview of silicon photonic systems for deep learning inference and in situ training.

Original languageEnglish (US)
Title of host publicationIntegrated Photonics Research Silicon and Nanophotonics, IPRSN 2020
PublisherOSA - The Optical Society
ISBN (Electronic)9781557528209
StatePublished - 2020
EventIntegrated Photonics Research Silicon and Nanophotonics, IPRSN 2020 - Washington, United States
Duration: Jul 13 2020Jul 16 2020

Publication series

NameOptics InfoBase Conference Papers
VolumePart F184-IPRSN 2020

Conference

ConferenceIntegrated Photonics Research Silicon and Nanophotonics, IPRSN 2020
CountryUnited States
CityWashington
Period7/13/207/16/20

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'Silicon photonics for AI hardware'. Together they form a unique fingerprint.

Cite this