@article{f3f31fef8b4b44f3aeddb271e5d37e13,
title = "Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points",
abstract = "Through intense research on Weyl semimetals during the past few years, we have come to appreciate that typical Weyl semimetals host many Weyl points. Nonetheless, the minimum nonzero number of Weyl points allowed in a time-reversal invariant Weyl semimetal is four. Realizing such a system is of fundamental interest and may simplify transport experiments. Recently, it was predicted that TaIrTe4 realizes a minimal Weyl semimetal. However, the Weyl points and Fermi arcs live entirely above the Fermi level, making them inaccessible to conventional angle-resolved photoemission spectroscopy (ARPES). Here, we use pump-probe ARPES to directly access the band structure above the Fermi level in TaIrTe4. We observe signatures of Weyl points and topological Fermi arcs. Combined with ab initio calculation, our results show that TaIrTe4 is a Weyl semimetal with the minimum number of four Weyl points. Our work provides a simpler platform for accessing exotic transport phenomena arising in Weyl semimetals.",
author = "Ilya Belopolski and Peng Yu and Sanchez, {Daniel S.} and Yukiaki Ishida and Chang, {Tay Rong} and Zhang, {Songtian S.} and Xu, {Su Yang} and Hao Zheng and Guoqing Chang and Guang Bian and Jeng, {Horng Tay} and Takeshi Kondo and Hsin Lin and Zheng Liu and Shik Shin and Hasan, {M. Zahid}",
note = "Funding Information: I.B. thanks Daixiang Mou and Adam Kaminski for use of their conventional laser ARPES system at Ames Laboratory & Iowa State University during the preliminary phase of this project. I.B. acknowledges the support of the US National Science Foundation GRFP. The work at Princeton is supported by the US National Science Foundation, Division of Materials Research, under Grants No. NSF-DMR-1507585 and No. NSF-DMR-1006492 and by the Gordon and Betty Moore Foundation through the EPIQS program grant GBMF4547 (Hasan). Y.I. is supported by the Japan Society for the Promotion of Science, KAKENHI 26800165. This work is also financially supported by the Singapore National Research Foundation (NRF) under NRF RF Award No. NRF-RF2013-08, MOE Tier 2 MOE2016-T2-1-131 and MOE2016-T2-2-153 (S). T.-R. C. and H.-T. J. are supported by the Ministry of Science and Technology, National Tsing Hua University, National Cheng Kung University, and Academia Sinica, Taiwan. T.-R. C. and H.-T. J. also thank the National Center for High-Performance Computing, the Computer and Information Networking Center of National Taiwan University, and the National Center for Theoretical Sciences, Taiwan for technical support. H.L. acknowledges the Singapore NRF under Award No. NRF-NRFF2013-03. Publisher Copyright: {\textcopyright} 2017 The Author(s).",
year = "2017",
month = dec,
day = "1",
doi = "10.1038/s41467-017-00938-1",
language = "English (US)",
volume = "8",
journal = "Nature communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",
}