Abstract
We study operator entanglement measures of the unitary evolution operators of (1 + 1)-dimensional conformal field theories (CFTs), aiming to uncover their scrambling and chaotic behaviors. In particular, we compute the bi-partite and tri-partite mutual information for various configurations of input and output subsystems, and as a function of time. We contrast three different CFTs: the free fermion theory, compactified free boson theory at various radii, and CFTs with holographic dual. We find that the bi-partite mutual information exhibits distinct behaviors for these different CFTs, reflecting the different information scrambling capabilities of these unitary operators; while a quasi-particle picture can describe the case of the free fermion and free boson CFTs well, it completely fails for the case of holographic CFTs. Similarly, the tri-partite mutual information also distinguishes the unitary evolution operators of different CFTs. In particular, its late-time behaviors, when the output subsystems are semi-infinite, are quite distinct for these theories. We speculate that for holographic theories the late-time saturation value of the tri-partite mutual information takes the largest possible negative value and saturates the lower bound among quantum field theories.
Original language | English (US) |
---|---|
Article number | 093107 |
Journal | Journal of Statistical Mechanics: Theory and Experiment |
Volume | 2019 |
Issue number | 9 |
DOIs | |
State | Published - 2021 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Statistics and Probability
- Statistics, Probability and Uncertainty
Keywords
- AdS/CFT correspondence
- Conformal field theory
- Entanglement entropies
- Quantum chaos