SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory

Emmanouil Koukoumidis, Li Shiuan Peh, Margaret Rose Martonosi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

241 Scopus citations

Abstract

While traffic signals are necessary to safely control competing flows of traffic, they inevitably enforce a stop-and-go movement pattern that increases fuel consumption, reduces traffic flow and causes traffic jams. These side effects can be alleviated by providing drivers and their onboard computational devices (e.g., vehicle computer, smartphone) with information about the schedule of the traffic signals ahead. Based on when the signal ahead will turn green, drivers can then adjust speed so as to avoid coming to a complete halt. Such information is called Green Light Optimal Speed Advisory (GLOSA). Alternatively, the onboard computational device may suggest an efficient detour that will save the driver from stops and long waits at red lights ahead. This paper introduces and evaluates SignalGuru, a novel software service that relies solely on a collection of mobile phones to detect and predict the traffic signal schedule, enabling GLOSA and other novel applications. Our SignalGuru leverages windshield-mounted phones to opportunistically detect current traffic signals with their cameras, collaboratively communicate and learn traffic signal schedule patterns, and predict their future schedule. Results from two deployments of SignalGuru, using iPhones in cars in Cambridge (MA, USA) and Singapore, show that traffic signal schedules can be predicted accurately. On average, SignalGuru comes within 0.66s, for pre-timed traffic signals and within 2.45s, for traffic-adaptive traffic signals. Feeding SignalGuru's predicted traffic schedule to our GLOSA application, our vehicle fuel consumption measurements show savings of 20.3%, on average.

Original languageEnglish (US)
Title of host publicationMobiSys'11 - Compilation Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services and Co-located Workshops
Pages127-140
Number of pages14
DOIs
StatePublished - Aug 8 2011
Event9th International Conference on Mobile Systems, Applications, and Services, MobiSys'11 and Co-located Workshops - Bethesda, MD, United States
Duration: Jun 28 2011Jul 1 2011

Publication series

NameMobiSys'11 - Compilation Proceedings of the 9th International Conference on Mobile Systems, Applications and Services and Co-located Workshops

Other

Other9th International Conference on Mobile Systems, Applications, and Services, MobiSys'11 and Co-located Workshops
CountryUnited States
CityBethesda, MD
Period6/28/117/1/11

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Computer Science Applications
  • Communication

Keywords

  • cameras
  • detection
  • green light optimal speed advisory
  • mobile phones
  • opportunistic sensing
  • prediction
  • signalguru
  • traffic signal
  • transition filtering

Fingerprint Dive into the research topics of 'SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory'. Together they form a unique fingerprint.

  • Cite this

    Koukoumidis, E., Peh, L. S., & Martonosi, M. R. (2011). SignalGuru: Leveraging mobile phones for collaborative traffic signal schedule advisory. In MobiSys'11 - Compilation Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services and Co-located Workshops (pp. 127-140). (MobiSys'11 - Compilation Proceedings of the 9th International Conference on Mobile Systems, Applications and Services and Co-located Workshops). https://doi.org/10.1145/1999995.2000008