Signal detection and target gene induction by the CpxRA two-component system

Patricia A. DiGiuseppe, Thomas J. Silhavy

Research output: Contribution to journalArticlepeer-review

176 Scopus citations


The Cpx pathway is a two-component signal transduction system that senses a variety of envelope stresses, including misfolded proteins, and responds by upregulating periplasmic folding and trafficking factors. CpxA resides in the inner membrane and has both kinase and phosphatase activities. CpxR, the response regulator, mediates a response by activating transcription of stress-combative genes. Signal transduction is subject to feedback inhibition via regulon member CpxP and autoamplification. Recently, it was shown that the Cpx pathway is also upregulated when cells adhere to hydrophobic surfaces and that this response is dependent on the outer membrane lipoprotein NlpE. Here we show that while NlpE is required for induction of the Cpx pathway by adhesion, induction by envelope stress and during growth is NlpE independent. We show that while all of the envelope stresses tested induce the Cpx pathway in a manner that is dependent on the periplasmic domain of CpxA, induction during growth is independent of CpxA. Therefore, we propose that the Cpx pathway can sense inducing cues that enter the signaling pathway at three distinct points. Although CpxP is not required for induction of the Cpx pathway, we show that its activity as a negative regulator of CpxA is inactivated by envelope stress. Moreover, the cpxP promoter is more inducible than any other regulon member tested. Consistent with these results, we suggest that CpxP performs a second function, most likely that of a chaperone. Finally, we show that two Cpx-regulated genes are differentially upregulated in response to different envelope stresses, suggesting the existence of three stress-responsive systems.

Original languageEnglish (US)
Pages (from-to)2432-2440
Number of pages9
JournalJournal of bacteriology
Issue number8
StatePublished - Apr 2003

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Microbiology


Dive into the research topics of 'Signal detection and target gene induction by the CpxRA two-component system'. Together they form a unique fingerprint.

Cite this