Shuttling a single charge across a one-dimensional array of silicon quantum dots

A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, J. R. Petta

Research output: Contribution to journalArticlepeer-review

176 Scopus citations


Significant advances have been made towards fault-tolerant operation of silicon spin qubits, with single qubit fidelities exceeding 99.9%, several demonstrations of two-qubit gates based on exchange coupling, and the achievement of coherent single spin-photon coupling. Coupling arbitrary pairs of spatially separated qubits in a quantum register poses a significant challenge as most qubit systems are constrained to two dimensions with nearest neighbor connectivity. For spins in silicon, new methods for quantum state transfer should be developed to achieve connectivity beyond nearest-neighbor exchange. Here we demonstrate shuttling of a single electron across a linear array of nine series-coupled silicon quantum dots in ~50 ns via a series of pairwise interdot charge transfers. By constructing more complex pulse sequences we perform parallel shuttling of two and three electrons at a time through the array. These experiments demonstrate a scalable approach to physically transporting single electrons across large silicon quantum dot arrays.

Original languageEnglish (US)
Article number1063
JournalNature communications
Issue number1
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Shuttling a single charge across a one-dimensional array of silicon quantum dots'. Together they form a unique fingerprint.

Cite this