Shared functional specialization in transformer-based language models and the human brain

Sreejan Kumar, Theodore R. Sumers, Takateru Yamakoshi, Ariel Goldstein, Uri Hasson, Kenneth A. Norman, Thomas L. Griffiths, Robert D. Hawkins, Samuel A. Nastase

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

When processing language, the brain is thought to deploy specialized computations to construct meaning from complex linguistic structures. Recently, artificial neural networks based on the Transformer architecture have revolutionized the field of natural language processing. Transformers integrate contextual information across words via structured circuit computations. Prior work has focused on the internal representations (“embeddings”) generated by these circuits. In this paper, we instead analyze the circuit computations directly: we deconstruct these computations into the functionally-specialized “transformations” that integrate contextual information across words. Using functional MRI data acquired while participants listened to naturalistic stories, we first verify that the transformations account for considerable variance in brain activity across the cortical language network. We then demonstrate that the emergent computations performed by individual, functionally-specialized “attention heads” differentially predict brain activity in specific cortical regions. These heads fall along gradients corresponding to different layers and context lengths in a low-dimensional cortical space.

Original languageEnglish (US)
Article number5523
JournalNature communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Shared functional specialization in transformer-based language models and the human brain'. Together they form a unique fingerprint.

Cite this